In order to one-hot-encode the factor variables in a dataset, I am using the great function of user "Ben" in this post: How to one-hot-encode factor variables with data.table?
one_hot <- function(dt, cols="auto", dropCols=TRUE, dropUnusedLevels=FALSE){
# One-Hot-Encode unordered factors in a data.table
# If cols = "auto", each unordered factor column in dt will be encoded. (Or specifcy a vector of column names to encode)
# If dropCols=TRUE, the original factor columns are dropped
# If dropUnusedLevels = TRUE, unused factor levels are dropped
# Automatically get the unordered factor columns
if(cols[1] == "auto") cols <- colnames(dt)[which(sapply(dt, function(x) is.factor(x) & !is.ordered(x)))]
# Build tempDT containing and ID column and 'cols' columns
tempDT <- dt[, cols, with=FALSE]
tempDT[, ID := .I]
setcolorder(tempDT, unique(c("ID", colnames(tempDT))))
for(col in cols) set(tempDT, j=col, value=factor(paste(col, tempDT[[col]], sep="_"), levels=paste(col, levels(tempDT[[col]]), sep="_")))
# One-hot-encode
if(dropUnusedLevels == TRUE){
newCols <- dcast(melt(tempDT, id = 'ID', value.factor = T), ID ~ value, drop = T, fun = length)
} else{
newCols <- dcast(melt(tempDT, id = 'ID', value.factor = T), ID ~ value, drop = F, fun = length)
}
# Combine binarized columns with the original dataset
result <- cbind(dt, newCols[, !"ID"])
# If dropCols = TRUE, remove the original factor columns
if(dropCols == TRUE){
result <- result[, !cols, with=FALSE]
}
return(result)
}
The function creates n dummy variables for all n factor levels per factor column. But since I want to use the data for modelling, I want only n-1 dummy variables per factor column. Is that possible and if yes, how can I do this using this function?
From my perspective, this line must be adjusted:
newCols <- dcast(melt(tempDT, id = 'ID', value.factor = T), ID ~ value, drop = T, fun = length)
Here is the input table...
ID color size
1: 1 black large
2: 2 green medium
3: 3 red small
library(data.table)
DT = setDT(structure(list(ID = 1:3, color = c("black", "green", "red"),
size = c("large", "medium", "small")), .Names = c("ID", "color",
"size"), row.names = c(NA, -3L), class = "data.frame"))
...and the desired output table:
ID color.black color.green size.large size.medium
1 1 0 1 0
2 0 1 0 1
3 0 0 0 0