2

I have the following dataframe (df):

    SERV_OR_IOR_ID   IMP_START_TIME IMP_CLR_TIME  IMP_START_TIME_BIN IMP_CLR_TIME_BIN
0     -1447310116       23:59:00     00:11:00                 47          0
1      1673545041       00:00:00     00:01:00                  0          0       
2      -743717696       23:59:00     00:00:00                 47          0
3       58641876        04:01:00     09:02:00                  8         18

I want to duplicate the rows for which IMP_START_TIME_BIN is less than IMP_CLR_TIME_BIN as many times as the absolute difference of IMP_START_TIME_BIN and IMP_CLR_TIME_BIN and then append (at the end of the data frame) or preferable append below that row while incrementing the value of IMP_START_TIME_BIN.

For example, for row 3, the difference is 10 and thus I should append 10 rows in the data frame incrementing the value in the IMP_START_TIME_BIN from 8(excluding) to 18(including).

The result should look like this:

    SERV_OR_IOR_ID   IMP_START_TIME IMP_CLR_TIME  IMP_START_TIME_BIN IMP_CLR_TIME_BIN
0     -1447310116       23:59:00     00:11:00                 47          0
1      1673545041       00:00:00     00:01:00                  0          0       
2      -743717696       23:59:00     00:00:00                 47          0
3       58641876        04:01:00     09:02:00                  8         18
4       58641876        04:01:00     09:02:00                  9         18
...      ...             ...          ...                     ...        ...
13      58641876        04:01:00     09:02:00                 18         18

For this I tried to do the following but it didn't work :

for i in range(len(df)): if df.ix[i,3] < df.ix[i,4]: for j in range(df.ix[i,3]+1, df.ix[i,4]+1): df = df.append((df.set_value(i,'IMP_START_TIME_BIN',j))*abs(df.ix[i,3] - df.ix[i,4]))

How can I do it ?

Shreyas
  • 419
  • 1
  • 5
  • 14
  • this happend beacuse you are trying to add a row using append. but for appending you need dataframe. convert the rows as a new dataframe and then append it – nishant kumar Apr 26 '17 at 06:35

1 Answers1

1

You can use this solution, only necessary index values has to be unique:

#first filter only values for repeating
l = df['IMP_CLR_TIME_BIN'] - df['IMP_START_TIME_BIN']
l = l[l > 0] 
print (l)
3    10
dtype: int64

#repeat rows by repeating index values
df1 = df.loc[np.repeat(l.index.values,l.values)].copy()

#add counter to column IMP_START_TIME_BIN
#better explanation http://stackoverflow.com/a/43518733/2901002
a = pd.Series(df1.index == df1.index.to_series().shift())
b = a.cumsum()
a = b.sub(b.mask(a).ffill().fillna(0).astype(int)).add(1)
df1['IMP_START_TIME_BIN'] = df1['IMP_START_TIME_BIN'] + a.values

#append to original df, if necessary sort
df = df.append(df1, ignore_index=True).sort_values('SERV_OR_IOR_ID')
print (df)
    SERV_OR_IOR_ID IMP_START_TIME IMP_CLR_TIME  IMP_START_TIME_BIN  \
0      -1447310116       23:59:00     00:11:00                  47   
1       1673545041       00:00:00     00:01:00                   0   
2       -743717696       23:59:00     00:00:00                  47   
3         58641876       04:01:00     09:02:00                   8   
4         58641876       04:01:00     09:02:00                   9   
5         58641876       04:01:00     09:02:00                  10   
6         58641876       04:01:00     09:02:00                  11   
7         58641876       04:01:00     09:02:00                  12   
8         58641876       04:01:00     09:02:00                  13   
9         58641876       04:01:00     09:02:00                  14   
10        58641876       04:01:00     09:02:00                  15   
11        58641876       04:01:00     09:02:00                  16   
12        58641876       04:01:00     09:02:00                  17   
13        58641876       04:01:00     09:02:00                  18   

    IMP_CLR_TIME_BIN  
0                  0  
1                  0  
2                  0  
3                 18  
4                 18  
5                 18  
6                 18  
7                 18  
8                 18  
9                 18  
10                18  
11                18  
12                18  
13                18  
jezrael
  • 822,522
  • 95
  • 1,334
  • 1,252