Determine a minimal cover using your FD's:
{A -> C, A -> G, A -> H,
B -> nothing,
C -> nothing,
D -> nothing,
E -> nothing,
F -> nothing
G -> nothing
H -> nothing
DE -> F}
Note AD -> C
drops out because A
alone determines C
which implies D
is redundant in the FD (see Armstrong's Axioms - Augmentation).
3NF and BCNF definitions relate to dependencies about compund keys. The only compound key
you have here is DE
. Neither D
or E
participate in any other non-null FD's
so eliminating transitive dependencies and ensuring that dependent attributes rely on the
'key, the whole key, and nothing but the key' is not an issue here.
Break into relations so that the FD left hand side is the key and the right hand sides
are the non-key dependent attributes of that key:
[Key(A), C, G, H]
[Key(D, E), F]
Now eliminate these attributes from the cover, whatever is left are standalone relations.
[Key(B)]
This should be in 3NF/BCNF