After creating the model using h2o.randomForest
, then using:
perf <- h2o.performance(model, test)
print(perf)
I get the following information (value H2OModelMetrics
object)
H2OBinomialMetrics: drf
MSE: 0.1353948
RMSE: 0.3679604
LogLoss: 0.4639761
Mean Per-Class Error: 0.3733908
AUC: 0.6681437
Gini: 0.3362873
Confusion Matrix (vertical: actual; across: predicted)
for F1-optimal threshold:
0 1 Error Rate
0 2109 1008 0.323388 =1008/3117
1 257 350 0.423394 =257/607
Totals 2366 1358 0.339689 =1265/3724
Maximum Metrics: Maximum metrics at their respective thresholds
metric threshold value idx
1 max f1 0.080124 0.356234 248
2 max f2 0.038274 0.515566 330
3 max f0point5 0.173215 0.330006 131
4 max accuracy 0.288168 0.839957 64
5 max precision 0.941437 1.000000 0
6 max recall 0.002550 1.000000 397
7 max specificity 0.941437 1.000000 0
8 max absolute_mcc 0.113838 0.201161 195
9 max min_per_class_accuracy 0.071985 0.621087 262
10 max mean_per_class_accuracy 0.078341 0.626921 251
Gains/Lift Table: Extract with `h2o.gainsLift(<model>, <data>)`
or `h2o.gainsLift(<model>, valid=<T/F>, xval=<T/F>)`
I use to look at sensitivity (recall) and specificity for comparing the quality of my prediction model, but with the information provided I am not able to understand in terms of such metrics. Based on above information how can I evaluate the quality of my prediction?
If I compute such metrics using the confusion matrix I get: sens=0.58
, spec=0.68
that is different from the information provided.
If there any way to get such values like we have using confusionMatrix
from caret
package?
For me it is more intuitive this metric:
than logLoss
metric.