Here is my code in matlab:
x = [1 2 3 4];
result = fft(x);
a = real(result);
b = imag(result);
Result from matlab:
a = [10,-2,-2,-2]
b = [ 0, 2, 0,-2]
And my runnable code in objective-c:
int length = 4;
float* x = (float *)malloc(sizeof(float) * length);
x[0] = 1;
x[1] = 2;
x[2] = 3;
x[3] = 4;
// Setup the length
vDSP_Length log2n = log2f(length);
// Calculate the weights array. This is a one-off operation.
FFTSetup fftSetup = vDSP_create_fftsetup(log2n, FFT_RADIX2);
// For an FFT, numSamples must be a power of 2, i.e. is always even
int nOver2 = length/2;
// Define complex buffer
COMPLEX_SPLIT A;
A.realp = (float *) malloc(nOver2*sizeof(float));
A.imagp = (float *) malloc(nOver2*sizeof(float));
// Generate a split complex vector from the sample data
vDSP_ctoz((COMPLEX*)x, 2, &A, 1, nOver2);
// Perform a forward FFT using fftSetup and A
vDSP_fft_zrip(fftSetup, &A, 1, log2n, FFT_FORWARD);
//Take the fft and scale appropriately
Float32 mFFTNormFactor = 0.5;
vDSP_vsmul(A.realp, 1, &mFFTNormFactor, A.realp, 1, nOver2);
vDSP_vsmul(A.imagp, 1, &mFFTNormFactor, A.imagp, 1, nOver2);
printf("After FFT: \n");
printf("%.2f | %.2f \n",A.realp[0], 0.0);
for (int i = 1; i< nOver2; i++) {
printf("%.2f | %.2f \n",A.realp[i], A.imagp[i]);
}
printf("%.2f | %.2f \n",A.imagp[0], 0.0);
The output from objective c:
After FFT:
10.0 | 0.0
-2.0 | 2.0
The results are so close. I wonder where is the rest ? I know missed something but don't know what is it.
Updated: I found another answer here . I updated the output
After FFT:
10.0 | 0.0
-2.0 | 2.0
-2.0 | 0.0
but even that there's still 1 element missing -2.0 | -2.0