If you feel I'm wrong and I need to understand the foundations deeply in order to get value out of ML, do let me know.
Okay, I'll bite.
There are really two schools of thought currently related to prediction: "machine learners" versus statisticians. The former group focuses almost entirely on practical and applied prediction, using techniques like k-fold cross-validation, bagging, etc., while the latter group is focused more on statistical theory and research methods. You seem to fall into the machine-learning camp, which is fine, but then you say this:
As much as I would love to understand the basic fundamentals of how this would work out mathematically, right now much much more focussed on getting it done, so a conceptual understanding of the systems and processes involved is what I'm looking to get.
While a "conceptual understanding of the systems and processes involved" is a prerequisite for doing advanced analytics, it isn't sufficient if you're the one conducting the analysis (it would be sufficient for a manager, who's not as close to the modeling).
With just a general idea of what's going on, say, in a logistic regression model, you would likely throw all statistical assumptions (which are important) to the wind. Do you know whether certain features or groups shouldn't be included because there aren't enough observations in that group for the test statistic to be valid? What can happen to your predictions and hypotheses when you have high variance-inflation factors?
These are important considerations when doing statistics, and oftentimes people see how easy it is to do from sklearn.svm import SVC
or somthing like that and run wild. That's how you get caught with your pants around your ankles.
How do I build this box driven by ML?
You don't seem to have even a rudimentary understanding of how to approach machine/statistical learning problems. I would highly recommend that you take an "Introduction to Statistical Learning"- or "Intro to Regression Modeling"-type course in order to think about how you translate the URLs you have into meaningful features that have significant power predicting URL class. Think about how you can decompose a URL into individual pieces that might give some information as to which class a certain URL pertains. If you're classifying espn.com
domains by sport, it'd be pretty important to parse nba
out of http://www.espn.com/nba/team/roster/_/name/cle
, don't you think?
Good luck with your project.
Edit:
To nudge you along, though: every ML problem boils down to some function mapping input to output. Your outputs are URL classes. Your inputs are URLs. However, machines only understand numbers, right? URLs aren't numbers (AFAIK). So you'll need to find a way to translate information contained in the URLs to what we call "features" or "variables." One place to start, there, would be one-hot encoding different parts of each URL. Think of why I mentioned the ESPN example above, and why I extracted info like nba
from the URL. I did that because, if I'm trying to predict to which sport a given URL pertains, nba
is a dead giveaway (i.e. it would very likely be highly predictive of sport).