According to this question, all iterative loops can be translated into recursion
"Translated" might be a bit of a stretch. The proof that for every iterative loop there is an equivalent recursive program is trivial if you understand Turing completeness: since a Turing machine can be implemented using strictly iterative structures and strictly recursive structures, every program that can be expressed in an iterative language can be expressed in a recursive language, and vice-versa. This means that for every iterative loop there is an equivalent recursive construct (and the other way around). However, that doesn't mean we have some automated way of transforming one into the other.
and those iterative loops can be transformed into tail recursion
Tail recursion can perhaps be easily transformed into an iterative loop, and the other way around. But not all recursion is tail recursion. Here's an example. Suppose we have some binary tree. It consists of node
s. Each node
can have a left
and a right
child and a value
. If a node has no children, then isLeaf
returns true for it. We'll assume there's some function max
that returns the maximum of two values, and if one of the values is null
it returns the other one. Now we want to define a function that finds the maximum value among all the leaf nodes. Here it is in some pseudo-code I cooked up.
findmax(node) {
if (node == null) {
return null
}
if (node.isLeaf) {
return node.value
} else {
return max(findmax(node.left), findmax(node.right))
}
}
There's two recursive calls in the max
function, so we can't optimize for tail recursion. We need the results of both before we can supply them to the max
function and determine the result of the call for the current node.
Now, there may be a way of getting the same result, using recursion and only a single tail-recursive call. It is functionally equivalent, but it is a different algorithm. Compilers can do a lot of transformations to create a functionally equivalent program with lots of optimizations, but they're not quite clever enough to create functionally equivalent algorithms.
Even the transformation of a function that only calls itself recursively once into a tail-recursive version would be far from trivial. Such an adaptation usually employs some argument passed into the recursive invocation that is used as an "accumulator" for the current results.
Look at the next naive implementation for calculating a factorial of a number (e.g. fact(5) = 5*4*3*2*1):
fact(number) {
if (number == 1) {
return 1
} else {
return number * fact(number - 1)
}
}
It's not tail-recursive. But it can be made so in this way:
fact(number, acc) {
if (number == 1) {
return acc
} else {
return fact(number - 1, number * acc)
}
}
// Helper function
fact(number) {
return fact(number, 1)
}
This requires an interpretation of what is being done. Recognizing the case for stuff like this is easy enough, but what if you call a function instead of a multiplication? How will the compiler know that for the initial call the accumulator must be 1 and not, say, 0? How do you translate this program?
recsub(number) {
if (number == 1) {
return 1
} else {
return number - recsub(number - 1)
}
}
This is as of yet outside the scope of the sort of compiler we have now, and may in fact always be.
Maybe it would be interesting to ask this on the computer science Stack Exchange to see if they know of some papers or proofs that investigate this more in-depth.