I have some problem when testing FFT from MathNet: The idea is that if I apply FFT to the characteristic function of a gaussian variable I should find the gaussian density function.
When I plot VectorFFT the figure does seems a density function but in zero it does not have value 1, it has value 1.4689690914109.
There must be some problems with the scaling. I tried out all type of FourierOptions in Fourier.Inverse and all type of divisions/multiplications for PI, 2PI, sqrt(2PI) but nothing gives me the value 1 at the center of the density function.
Also, since various definitions of Fourier Transform and its inverse exists, I was wondering which one is implemented by MathNet, I could not find it in the documentation.
Any ideas?
public void DensityGaussian()
{
double eta = 0.1; //step in discrete integral
int pow2 = 256; // N^2
double mu = 0; // centred gaussian
double sigma = 1; // with unitary variance
//FFT
double lambda = 2 * System.Math.PI / (pow2 * eta);
double b = 0.5 * pow2 * lambda;
Complex[] VectorToFFT = new Complex[pow2];
for (int j = 0; j < pow2; j++)
{
double z = eta * j;
if (z == 0) { z = 0.00000000000001; }
VectorToFFT[j] = System.Numerics.Complex.Exp(new Complex(0, b * z));
VectorToFFT[j] *= (System.Numerics.Complex.Exp(new Complex(
-sigma*sigma*z*z, mu * z))); //char function of gaussian
}
Fourier.Inverse(VectorToFFT, FourierOptions.NoScaling);
//scaling
for (int i = 0; i < pow2; i++)
{
VectorToFFT[i] /= (2 * System.Math.PI); //test
}
Console.WriteLine("Is density?");
Assert.IsTrue(1 == 1);
}