I have an RDD of the form RDD[(string, List(Tuple))]
, like below:
[(u'C1589::HG02922', [(83779208, 2), (677873089, 0), ...]
When attempting to run the below code to convert it to a dataframe, spark.createDataFrame(rdd)
works fine but rdd.toDF()
fails.
vector_df1 = spark.createDataFrame(vector_rdd) # Works fine.
vector_df1.show()
+--------------+--------------------+
| _1| _2|
+--------------+--------------------+
|C1589::HG02922|[[83779208,2], [6...|
| HG00367|[[83779208,0], [6...|
| C477::HG00731|[[83779208,0], [6...|
| HG00626|[[83779208,0], [6...|
| HG00622|[[83779208,0], [6...|
...
vector_df2 = vector_rdd.toDF() # Tosses the error.
The error thrown is:
Traceback (most recent call last):
File "/tmp/7ff0f62d-d849-4884-960f-bb89b5f3dd80/ml_on_vds.py", line 47, in <module>
vector_df2 = vector_rdd.toDF().show()
File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/session.py", line 57, in toDF
File "/usr/lib/spark/python/lib/py4j-0.10.3-src.zip/py4j/java_gateway.py", line 1124, in __call__
File "/usr/lib/spark/python/lib/py4j-0.10.3-src.zip/py4j/java_gateway.py", line 1094, in _build_args
File "/usr/lib/spark/python/lib/py4j-0.10.3-src.zip/py4j/protocol.py", line 289, in get_command_part
AttributeError: 'PipelinedRDD' object has no attribute '_get_object_id'
ERROR: (gcloud.dataproc.jobs.submit.pyspark) Job [7ff0f62d-d849-4884-960f-bb89b5f3dd80] entered state [ERROR] while waiting for [DONE].
Has anyone encountered an issue similar to this before? .toDF()
is just a simple wrapper for createDataFrame()
so I don't understand why it would fail. I have verified at runtime I am using Spark 2.0.2.
# Imports
from pyspark.sql import SparkSession
from pyspark.sql.functions import udf, hash
from pyspark.sql.types import *
from pyspark.ml.clustering import KMeans
from pyspark.ml.linalg import Vectors
from pyspark.ml.feature import StringIndexer
from hail import *
# SparkSession
spark = (SparkSession.builder.appName("PopulationGenomics")
.config("spark.sql.files.openCostInBytes", "1099511627776")
.config("spark.sql.files.maxPartitionBytes", "1099511627776")
.config("spark.hadoop.io.compression.codecs", "org.apache.hadoop.io.compress.DefaultCodec,is.hail.io.compress.BGzipCodec,org.apache.hadoop.io.compress.GzipCodec")
.getOrCreate())
Per request, some more of the code which generates the error:
vector_rdd = (indexed_df.rdd.map(lambda r: (r[0], (r[3], r[2])))
.groupByKey()
.mapValues(lambda l: Vectors.sparse((max_index + 1), list(l))))
vector_df = spark.createDataFrame(vector_rdd, ['s', 'features']) # Works
vector_df1 = vector_rdd.toDF()
vector_df1.show() # Fails
indexed_df
is a DataFrame of the schema:
StructType(List(StructField(s,StringType,true),StructField(variant_hash,IntegerType,false),StructField(call,IntegerType,true),StructField(index,DoubleType,true)))
And it looks like...
+--------------+------------+----+-----+
| s|variant_hash|call|index|
+--------------+------------+----+-----+
|C1046::HG02024| -60010252| 0|225.0|
|C1046::HG02025| -60010252| 1|225.0|
|C1046::HG02026| -60010252| 0|225.0|
|C1047::HG00731| -60010252| 0|225.0|
|C1047::HG00732| -60010252| 1|225.0|
|C1047::HG00733| -60010252| 0|225.0|
|C1048::HG02024| -60010252| 0|225.0|
|C1048::HG02025| -60010252| 1|225.0|
|C1048::HG02026| -60010252| 0|225.0|
|C1049::HG00731| -60010252| 0|225.0|
|C1049::HG00732| -60010252| 1|225.0|
|C1049::HG00733| -60010252| 0|225.0|
|C1050::HG03006| -60010252| 0|225.0|
|C1051::HG03642| -60010252| 0|225.0|
|C1589::HG02922| -60010252| 2|225.0|
|C1589::HG03006| -60010252| 0|225.0|
|C1589::HG03052| -60010252| 2|225.0|
|C1589::HG03642| -60010252| 0|225.0|
|C1589::NA12878| -60010252| 1|225.0|
|C1589::NA19017| -60010252| 1|225.0|
+--------------+------------+----+-----+