I'm grouping a dataframe by multiple columns and aggregating to obtain multiple statistics. How to obtain a totally flat structure with each possible combination of group-keys enumerated as rows and each statistic present as columns?
import numpy as np
import pandas as pd
cities = ['Berlin', 'Oslo']
days = ['Monday', 'Friday']
data = pd.DataFrame({
'city': np.random.choice(cities, 12),
'day': np.random.choice(days, 12),
'people': np.random.normal(loc=10, size=12),
'cats': np.random.normal(loc=6, size=12)})
grouped = data.groupby(['city', 'day']).agg([np.mean, np.std])
This way I'm getting:
cats people
mean std mean std
city day
Berlin Friday 6.146924 0.721263 10.445606 0.730992
Monday 5.239267 NaN 9.022811 NaN
Oslo Friday 6.322276 0.866899 11.579813 0.114341
Monday 5.028919 0.815674 10.458439 1.182689
I need to get it flat:
city day cats_mean cats_std people_mean people_std
Berlin Friday 6.146924 0.721263 10.445606 0.730992
Berlin Monday 5.239267 NaN 9.022811 NaN
Oslo Friday 6.322276 0.866899 11.579813 0.114341
Oslo Monday 5.028919 0.815674 10.458439 1.182689