I'm newbie in cuda programmation. I have a problem with this code (it was written by my teacher):
#include <stdio.h>
#define THREAD_PER_BLOCK 128
__global__ void add(int *a,const int N){
int index=threadIdx.x+blockIdx.x*blockDim.x;
if (index<N)
a[index] = a[index]+10;
}
int main( void ){
int *a;
// managed
int i;
int N=1024;
int size = N * sizeof( int );
cudaMallocManaged( &a, size );
for(i=0; i<N; i++) {
a[i]=i;
}
add<<< N/THREAD_PER_BLOCK, THREAD_PER_BLOCK >>>( a,N);
cudaDeviceSynchronize();
for (int i=0; i<10; i++){
printf("%d %d\n", i, a[i]);
}
cudaFree( a );
return 0;
}
I've detected a seg fault on fist for-loop, I have no idea of why the program crashes. My operative system is Ubuntu 14.04 and this is the output of querydevice:
Detected 1 CUDA Capable device(s)
Device 0: "GeForce 820M"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 2.1
Total amount of global memory: 1985 MBytes (2081095680 bytes)
( 2) Multiprocessors, ( 48) CUDA Cores/MP: 96 CUDA Cores
GPU Max Clock rate: 1550 MHz (1.55 GHz)
Memory Clock rate: 900 Mhz
Memory Bus Width: 64-bit
L2 Cache Size: 131072 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65535), 3D=(2048, 2048, 2048)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (65535, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce 820M
Result = PASS