One solution without using np.rot90
to rotate in clockwise direction would be to swap the last two axes and then flip the last one -
img.swapaxes(-2,-1)[...,::-1]
For counter-clockwise rotation, flip the second last axis -
img.swapaxes(-2,-1)[...,::-1,:]
With np.rot90
, the counter-clockwise rotation would be -
np.rot90(img,axes=(-2,-1))
Sample run -
In [39]: img = np.random.randint(0,255,(7,4,3,5))
In [40]: out_CW = img.swapaxes(-2,-1)[...,::-1] # Clockwise
In [41]: out_CCW = img.swapaxes(-2,-1)[...,::-1,:] # Counter-Clockwise
In [42]: img[0,0,:,:]
Out[42]:
array([[142, 181, 141, 81, 42],
[ 1, 126, 145, 242, 118],
[112, 115, 128, 0, 151]])
In [43]: out_CW[0,0,:,:]
Out[43]:
array([[112, 1, 142],
[115, 126, 181],
[128, 145, 141],
[ 0, 242, 81],
[151, 118, 42]])
In [44]: out_CCW[0,0,:,:]
Out[44]:
array([[ 42, 118, 151],
[ 81, 242, 0],
[141, 145, 128],
[181, 126, 115],
[142, 1, 112]])
Runtime test
In [41]: img = np.random.randint(0,255,(800,600))
# @Manel Fornos's Scipy based rotate func
In [42]: %timeit rotate(img, 90)
10 loops, best of 3: 60.8 ms per loop
In [43]: %timeit np.rot90(img,axes=(-2,-1))
100000 loops, best of 3: 4.19 µs per loop
In [44]: %timeit img.swapaxes(-2,-1)[...,::-1,:]
1000000 loops, best of 3: 480 ns per loop
Thus, for rotating by 90
degrees or multiples of it, numpy.dot
or swapping axes
based ones seem pretty good in terms of performance and also more importantly do not perform any interpolation that would change the values otherwise as done by Scipy's rotate based function.