I am iterating over the rows that are available, but it doesn't seem to be the most optimal way to do it -- it takes forever.
Is there a special way in Pandas
to do it.
INIT_TIME = datetime.datetime.strptime(date + ' ' + time, "%Y-%B-%d %H:%M:%S")
#NEED TO ADD DATA FROM THAT COLUMN
df = pd.read_csv(dataset_path, delimiter=',',skiprows=range(0,1),names=['TCOUNT','CORE','COUNTER','EMPTY','NAME','TSTAMP','MULT','STAMPME'])
df = df.drop('MULT',1)
df = df.drop('EMPTY',1)
df = df.drop('TSTAMP', 1)
for index, row in df.iterrows():
TMP_TIME = INIT_TIME + datetime.timedelta(seconds=row['TCOUNT'])
df['STAMPME'] = TMP_TIME.strftime("%s")
In addition, the datetime I am adding is in the following format
2017-05-11 11:12:37.100192 1494493957
2017-05-11 11:12:37.200541 1494493957
and therefore the unix timestamp is same (and it is correct), but is there a better way to represent it?