I have specific questions about how to train a neural network that is larger than ram. I want to use the de facto standard which appears to be Keras and tensorflow.
What are the key classes and methods that I need to use From Numpy, to scipy, to pandas, h5py, to keras in order to not exceed my meager 8 gb of ram? I have time to train the model; I don't have cash. My dataset requires 200 GB of ram.
In keras there is a model_fit() method. It requires X and Y numpy arrays. How do I get it to accept hdf5 numpy arrays on disk? And when specifying the model architecture itself How do I save ram because wouldn't the working memory require > 8 gb at times?
Regarding fit_generator, does that accept hdf5 files? If the model_fit() method can accept hdf5, do I even need fit generator? It seems that you still need to be able to fit the entire model in ram even with these methods?
In keras does the model include the training data when calculating its memory requirements? If so I am in trouble I think.
In essence I am under the assumption that at no time can I exceed my 8 Gb of ram, whether from one hot encoding to loading the model to training on even a small batch of samples. I am just not sure how to accomplish this concretely.