The idea of "copying a pointer", when taken literally, is nothing more than a simple assignment.
int x = 5;
int* p1 = &x;
int* p2 = p1; // there, we copied the pointer.
In this case, both p1
and p2
point to the same data - the int
variable x
. However, because this is so trivial, I'm inclined to think that what you really are asking about is how to copy the data that the pointer points to.
In this case, it depends on the data type. If the pointer points to a simple buffer of PODs, this involves allocating a separate buffer, and then using something like memcpy
(or preferably std::copy
) to copy the data. For example:
int* p1 = new int[100];
// ... fill p1 with values
int* p2 = new int[100]; // create a new buffer
std::copy(p1, p1 + 100, p2); // copy the data into p2
Or, you can use memcpy
to copy the buffer byte-by-byte, since the buffer contains PODs.
memcpy(p2, p1, 100 * sizeof(int));
However, if the pointed-to data is not a simple buffer, but rather a C++ object, you can't use memcpy
. You need to perform a deep copy of the object, (usually using the object's copy constructor) to get a clone of the object. How this is done, or whether it's even possible, depends on the object. (Some objects are noncopyable.)
I have no clue what a jfloat
is, but if the object is, for example, an std::string
, you would just do something like:
std::string* s1; // assume this points to a valid string
std::string* s2 = new std::string();
*s2 = *s1; // copies s1 using s2's assignment operator
In this contrived example it would be preferable to avoid heap-allocation altogether, and just use stack variables. But it demonstrates the idea of copying a heap-allocated object.