I am coding a little web scraper where I would like to implement multiprocessing / multi-threading.
I have written my function webScraper() which receives a String with a website URL as input, scrapes some domain data and writes that data to a CSV file, line by line (for each domain).
The input data with all the URLs is saved in a String array like this :
urls = ["google.com", "yahoo.com", "bing.com"]
. (I consider changing to URL import from CSV file.)
How can I use multiprocessing and write the function output to a CSV file without having inconsistencies and index out of bounds errors? I found a nice looking script, which seems to be exactly what I need. Unfortunately, I just switched to Python from Java a few days ago and can't figure out what I need to change exactly.
So basically, I just want to change the script below, so that it calls my function webScraper(url)
for each URL that is in my String array urls
or Input CSV file. The script should then write the function output for each array item line by line into my CSV (if I understood the code correctly).
That's the code I am working on (Thanks to hbar for the nice code!)
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
# multiproc_sums.py
"""A program that reads integer values from a CSV file and writes out their
sums to another CSV file, using multiple processes if desired.
"""
import csv
import multiprocessing
import optparse
import sys
NUM_PROCS = multiprocessing.cpu_count()
def make_cli_parser():
"""Make the command line interface parser."""
usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV",
__doc__,
"""
ARGUMENTS:
INPUT_CSV: an input CSV file with rows of numbers
OUTPUT_CSV: an output file that will contain the sums\
"""])
cli_parser = optparse.OptionParser(usage)
cli_parser.add_option('-n', '--numprocs', type='int',
default=NUM_PROCS,
help="Number of processes to launch [DEFAULT: %default]")
return cli_parser
class CSVWorker(object):
def __init__(self, numprocs, infile, outfile):
self.numprocs = numprocs
self.infile = open(infile)
self.outfile = outfile
self.in_csvfile = csv.reader(self.infile)
self.inq = multiprocessing.Queue()
self.outq = multiprocessing.Queue()
self.pin = multiprocessing.Process(target=self.parse_input_csv, args=())
self.pout = multiprocessing.Process(target=self.write_output_csv, args=())
self.ps = [ multiprocessing.Process(target=self.sum_row, args=())
for i in range(self.numprocs)]
self.pin.start()
self.pout.start()
for p in self.ps:
p.start()
self.pin.join()
i = 0
for p in self.ps:
p.join()
print "Done", i
i += 1
self.pout.join()
self.infile.close()
def parse_input_csv(self):
"""Parses the input CSV and yields tuples with the index of the row
as the first element, and the integers of the row as the second
element.
The index is zero-index based.
The data is then sent over inqueue for the workers to do their
thing. At the end the input process sends a 'STOP' message for each
worker.
"""
for i, row in enumerate(self.in_csvfile):
row = [ int(entry) for entry in row ]
self.inq.put( (i, row) )
for i in range(self.numprocs):
self.inq.put("STOP")
def sum_row(self):
"""
Workers. Consume inq and produce answers on outq
"""
tot = 0
for i, row in iter(self.inq.get, "STOP"):
self.outq.put( (i, sum(row)) )
self.outq.put("STOP")
def write_output_csv(self):
"""
Open outgoing csv file then start reading outq for answers
Since I chose to make sure output was synchronized to the input there
is some extra goodies to do that.
Obviously your input has the original row number so this is not
required.
"""
cur = 0
stop = 0
buffer = {}
# For some reason csv.writer works badly across processes so open/close
# and use it all in the same process or else you'll have the last
# several rows missing
outfile = open(self.outfile, "w")
self.out_csvfile = csv.writer(outfile)
#Keep running until we see numprocs STOP messages
for works in range(self.numprocs):
for i, val in iter(self.outq.get, "STOP"):
# verify rows are in order, if not save in buffer
if i != cur:
buffer[i] = val
else:
#if yes are write it out and make sure no waiting rows exist
self.out_csvfile.writerow( [i, val] )
cur += 1
while cur in buffer:
self.out_csvfile.writerow([ cur, buffer[cur] ])
del buffer[cur]
cur += 1
outfile.close()
def main(argv):
cli_parser = make_cli_parser()
opts, args = cli_parser.parse_args(argv)
if len(args) != 2:
cli_parser.error("Please provide an input file and output file.")
c = CSVWorker(opts.numprocs, args[0], args[1])
if __name__ == '__main__':
main(sys.argv[1:])
The whole thing wouldn't really be a problem for me, if there was no writting to a CSV file involved in the multiprocessing. I already tried a different solution Python Map Pool (link) but without success. I think there were inconsistencies among the Pools which led to errors.
Thanks for your ideas!