I am trying to find a way to do the equivalent re-sampling action as the pandas manipulation below:
example original dataframe df:
FT
Time
2017-03-18 23:30:00 73.9
2017-03-18 23:31:00 73.5
2017-03-18 23:32:00 71.6
2017-03-18 23:33:00 71.3
2017-03-18 23:34:00 72.3
2017-03-18 23:35:00 72.1
2017-03-18 23:36:00 70.1
2017-03-18 23:37:00 67.9
2017-03-18 23:38:00 65.4
2017-03-18 23:39:00 63.4
2017-03-18 23:40:00 61.3
2017-03-18 23:41:00 59.9
2017-03-18 23:42:00 58.4
2017-03-18 23:43:00 58.4
2017-03-18 23:44:00 55.6
2017-03-18 23:45:00 54.3
2017-03-18 23:46:00 54.3
2017-03-18 23:47:00 53.0
2017-03-18 23:48:00 51.9
2017-03-18 23:49:00 50.8
2017-03-18 23:50:00 49.8
2017-03-18 23:51:00 48.9
2017-03-18 23:52:00 47.6
2017-03-18 23:53:00 44.5
2017-03-18 23:54:00 57.2
2017-03-18 23:55:00 61.6
2017-03-18 23:56:00 59.8
2017-03-18 23:57:00 58.0
2017-03-18 23:58:00 56.2
2017-03-18 23:59:00 56.2
resampling:
date_format= '%d-%b-%Y %H:%M:%S'
df.index=pd.to_datetime(df.index,format=date_format)
df=df.resample('5Min').mean()
Output:
FT
Time
2017-03-18 23:30:00 72.52
2017-03-18 23:35:00 67.78
2017-03-18 23:40:00 58.72
2017-03-18 23:45:00 52.86
2017-03-18 23:50:00 49.60
2017-03-18 23:55:00 58.36
I would like to know the simplest way to resample a dataframe using a given aggregate function (e.g. mean, sum etc.) and a given sampling time. in Pandas, I understand interpolation is not used and the resample function performs a 'group by' manipulation.
I am guessing the conversion to a datetime could be done this way:
df$Time=strptime(df$Time,"%d-%b-%Y %H:%M:%S")
but I am not sure which R library I should use for the resample action itself.
Thank you
edit:
using readr read_csv I obtain
# A tibble: 43,981 × 6
Time Power Tin FT RT Flow
* <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 16-Feb-2017 11:00:00 0.09 18.87 57.9 53.3 17
2 16-Feb-2017 11:01:00 0.09 18.87 57.9 53.3 17
3 16-Feb-2017 11:02:00 0.09 18.87 57.9 53.3 17
4 16-Feb-2017 11:03:00 0.09 18.87 57.9 53.3 17
5 16-Feb-2017 11:04:00 0.09 18.87 57.9 53.3 17
6 16-Feb-2017 11:05:00 0.09 18.87 57.9 53.3 17
7 16-Feb-2017 11:06:00 0.09 18.87 57.9 53.3 17
8 16-Feb-2017 11:07:00 0.09 18.87 57.9 53.3 17
9 16-Feb-2017 11:08:00 0.09 18.87 57.9 53.3 17
10 16-Feb-2017 11:09:00 0.09 18.87 57.9 53.3 17
# ... with 43,971 more rows
but
df %>% thicken("5 min") %>% group_by(Time_5_min) %>% summarise(mean(FT))
gives the following error:
"Error: x does not contain a variable of class Date, POSIXct, or POSIXlt.
Traceback:"
update:
the solution given by @Edwin works well
I used the following conversion to datetime.
df$Time=as.POSIXct(df$Time, format="%d-%b-%Y %H:%M:%S")