I have implemented finding similar documents based on a particular document using LDA Model (using Gensim). Next thing i want to do is if I have multiple documents then how to get similar document based on the multiple documents provided as input.
I implemented LDA using this link
sample code for single query -
dictionary = corpora.Dictionary.load('dictionary.dict')
corpus = corpora.MmCorpus("corpus.mm")
lda = models.LdaModel.load("model.lda") #result from running online lda (training)
index = similarities.MatrixSimilarity(lda[corpus])
index.save("simIndex.index")
docname = "docs/the_doc.txt"
doc = open(docname, 'r').read()
vec_bow = dictionary.doc2bow(doc.lower().split())
vec_lda = lda[vec_bow]
sims = index[vec_lda]
sims = sorted(enumerate(sims), key=lambda item: -item[1])
print sims
Now if I have another doc then how to implement it.