Your variable y
in this case must be an m
-element vector containing integers in the range of 1 to num_labels
. The goal of the code is to create a matrix Y
that is m
-by-num_labels
where each row k
will contain all zeros except for a 1 in column y(k)
.
A way to generate Y
is to first create an identity matrix using the function eye
. This is a square matrix of all zeroes except for ones along the main diagonal. Row k
of the identity matrix will therefore have one non-zero element in column k
. We can therefore build matrix Y
out of rows indexed from the identity matrix, using y
as the row index. We could do this with a for loop (as in your second code sample), but that's not as simple and efficient as using a single indexing operation (as in your first code sample).
Let's look at an example (in MATLAB):
>> num_labels = 5;
>> y = [2 3 3 1 5 4 4 4]; % The columns where the ones will be for each row
>> I = eye(num_labels)
I =
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
>> Y = I(y, :)
Y =
% 1 in column ...
0 1 0 0 0 % 2
0 0 1 0 0 % 3
0 0 1 0 0 % 3
1 0 0 0 0 % 1
0 0 0 0 1 % 5
0 0 0 1 0 % 4
0 0 0 1 0 % 4
0 0 0 1 0 % 4
NOTE: Octave allows you to index function return arguments without first placing them in a variable, but MATLAB does not (at least, not very easily). Therefore, the syntax:
Y = eye(num_labels)(y, :);
only works in Octave. In MATLAB, you have to do it as in my example above, or use one of the other options here.