Can I limit the lifetime pollution from a struct?
Generically, if you're using them in any of your struct's fields, then you can't. They are made explicit for very good reasons (see Why are explicit lifetimes needed in Rust?), and once you have a struct containing objects that require explicit lifetimes, then they must be propagated.
Note that usually this isn't a concern to consumers of the struct, since the concrete lifetimes are then imposed by the compiler:
struct NameRef<'a>(&'a str);
let name = NameRef("Jake"); // 'a is 'static
One could also slightly mitigate the "noise" on the implementation of next
by using the definition of Self::Item
.
impl<'a> Iterator for LogReader<'a > {
type Item = (&'a str,&'a[ConvertedValue]);
fn next(&mut self) -> Option<Self::Item> {
(self.next_fn)(self)
}
}
However, your concern actually hides a more serious issue: Unlike you've mentioned, the values returned from next
are not necessarily internal data from the struct. They actually live for as long as the generic lifetime 'a
, and nothing inside LogReader
is actually bound by that lifetime.
This means two things:
(1) I could pass a function that gives something completely different, and it would work just fine:
static NO_DATA: &[()] = &[()];
fn my_next_fn<'a>(reader: &mut LogReader<'a>) -> Option<(&'a str, &'a[ConvertedValue])> {
Some(("wat", NO_DATA))
}
(2) Even if I wanted my function to return something from the log reader's internal data, it wouldn't work because the lifetimes do not match at all. Let's try it out anyway to see what happens:
static DATA: &[()] = &[()];
fn my_next_fn<'a>(reader: &mut LogReader<'a>) -> Option<(&'a str, &'a[ConvertedValue])> {
Some((&reader.data[0..4], DATA))
}
fn main() {
let mut a = LogReader {
data: "This is DATA!".to_owned(),
next_fn: my_next_fn
};
println!("{:?}", a.next());
}
The compiler would throw you this:
error[E0495]: cannot infer an appropriate lifetime for lifetime parameter in function call due to conflicting requirements
--> src/main.rs:26:12
|
26 | Some((&reader.data[0..4], DATA))
| ^^^^^^^^^^^^^^^^^
|
note: first, the lifetime cannot outlive the anonymous lifetime #1 defined on the body at 25:88...
--> src/main.rs:25:89
|
25 | fn my_next_fn<'a>(reader: &mut LogReader<'a>) -> Option<(&'a str, &'a[ConvertedValue])> {
| _________________________________________________________________________________________^ starting here...
26 | | Some((&reader.data[0..4], DATA))
27 | | }
| |_^ ...ending here
note: ...so that reference does not outlive borrowed content
--> src/main.rs:26:12
|
26 | Some((&reader.data[0..4], DATA))
| ^^^^^^^^^^^
note: but, the lifetime must be valid for the lifetime 'a as defined on the body at 25:88...
--> src/main.rs:25:89
|
25 | fn my_next_fn<'a>(reader: &mut LogReader<'a>) -> Option<(&'a str, &'a[ConvertedValue])> {
| _________________________________________________________________________________________^ starting here...
26 | | Some((&reader.data[0..4], DATA))
27 | | }
| |_^ ...ending here
note: ...so that expression is assignable (expected std::option::Option<(&'a str, &'a [()])>, found std::option::Option<(&str, &[()])>)
--> src/main.rs:26:5
|
26 | Some((&reader.data[0..4], DATA))
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
...where the anonymous lifetime #1 is the log reader's lifetime. Forcing &mut LogReader
to also have a lifetime 'a
(&'a mut LogReader<'a>
) would lead to further lifetime issues when attempting to implement Iterator
. This basically narrows down to the fact that 'a
is incompatible with references to values of LogReader
themselves.
So, how should we fix that?
but that doesn't change the fact that the return type has references and so lifetime annotations come into it
Although that is not accurate (since lifetime elision can occur in some cases), that gives a hint to the solution: either avoid returning references at all or delegate data to a separate object, so that 'a
can be bound to that object's lifetime. The final part of the answer to your question is in Iterator returning items by reference, lifetime issue.