Consider this Dataframe:
df = pd.DataFrame({'A': [1, 1, 2, 2, 3, 3],
'B': [10, 15, 20, 25, 30,35],
'C': [100, 150, 200, 250, 300, 350]})
This is the code to get values of column C, where it is the first row of each group (Column A):
firsts = df.groupby('A').first()['C']
So first will be: (100, 200, 300)
.
Now I want to add new column which it will be 1
if value of column C for row is in firsts
otherwise it will be 0
.
A | B | C | D |
---|---|---|---|
1 | 10 | 100 | 1 |
1 | 15 | 150 | 0 |
2 | 20 | 200 | 1 |
2 | 25 | 250 | 0 |
3 | 30 | 300 | 1 |
3 | 35 | 350 | 0 |
I used this:
df['D'] = df['C'].apply(lambda x: 1 if x in firsts else 0)
But the output is:
A | B | C | D |
---|---|---|---|
1 | 10 | 100 | 0 |
1 | 15 | 150 | 0 |
2 | 20 | 200 | 0 |
2 | 25 | 250 | 0 |
3 | 30 | 300 | 0 |
3 | 35 | 350 | 0 |
I appreciate if anyone explain why my solution is wrong and what is actual solution to this problem?