Despite going through multiple examples, I still don't understand how to classify sequences of varying length using Keras, similar to this question. I can train a network that detects frequencies of sinusoid with varying length, by using masking:
from keras import models
from keras.layers.recurrent import LSTM
from keras.layers import Dense, Masking
from keras.optimizers import RMSprop
from keras.losses import categorical_crossentropy
from keras.preprocessing.sequence import pad_sequences
import numpy as np
def gen_noise(noise_len, mag):
return np.random.uniform(size=noise_len) * mag
def gen_sin(t_val, freq):
return 2 * np.sin(2 * np.pi * t_val * freq)
def train_rnn(x_train, y_train, max_len, mask, number_of_categories):
epochs = 3
batch_size = 500
# three hidden layers of 256 each
vec_dims = 1
hidden_units = 256
in_shape = (max_len, vec_dims)
model = models.Sequential()
model.add(Masking(mask, name="in_layer", input_shape=in_shape,))
model.add(LSTM(hidden_units, return_sequences=False))
model.add(Dense(number_of_categories, input_shape=(number_of_categories,),
activation='softmax', name='output'))
model.compile(loss=categorical_crossentropy, optimizer=RMSprop())
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
validation_split=0.05)
return model
def gen_sig_cls_pair(freqs, t_stops, num_examples, noise_magnitude):
x = []
y = []
num_cat = len(freqs)
dt = 0.01
max_t = int(np.max(t_stops) / dt)
for f_i, f in enumerate(freqs):
for t_stop in t_stops:
t_range = np.arange(0, t_stop, dt)
t_len = t_range.size
for _ in range(num_examples):
sig = gen_sin(f, t_range) + gen_noise(t_len, noise_magnitude)
x.append(sig)
one_hot = np.zeros(num_cat, dtype=np.bool)
one_hot[f_i] = 1
y.append(one_hot)
pad_kwargs = dict(padding='post', maxlen=max_t, value=np.NaN, dtype=np.float32)
return pad_sequences(x, **pad_kwargs), np.array(y)
if __name__ == '__main__':
noise_mag = 0.01
mask_val = -10
frequencies = (5, 7, 10)
signal_lengths = (0.8, 0.9, 1)
x_in, y_in = gen_sig_cls_pair(frequencies, signal_lengths, 50, noise_mag)
mod = train_rnn(x_in[:, :, None], y_in, 100, mask_val, len(frequencies))
However, I don't understand how I'm supposed to tell Keras about the other sequences. I thought I could mask them too, but when I try, they just output NaN
.
testing_dat, expected = gen_sig_cls_pair(frequencies, signal_lengths, 1, 0)
res = mod.predict(testing_dat[:, :, None])
fig, axes = plt.subplots(3)
axes[0].plot(np.concatenate(testing_dat), label="input")
axes[1].plot(np.argmax(res, axis=1), "ro", label="result", alpha=0.2)
axes[1].plot(np.argmax(expected, axis=1), "bo", label="expected", alpha=0.2)
axes[1].legend(bbox_to_anchor=(1.1, 1))
axes[2].plot(res)
plt.show()
How do I make a network that can evaluate inputs of varying lengths?