As others have said, it doesn't make sense not to use Exp()
or a function based upon it. But if you really must use something else, and don't want to get too technical/mathematical, then the following should work (the real algorithm is far more complicated and requires much more knowledge of math).
The program uses a combination of the first N terms of Taylor series for the fraction of X and binary exponentiation for the integer part of X. It is probably not very fast, but pretty accurate, even for larger exponents. For comparison, I also display Exp(X)
. If your Pascal has a Double
or Extended
type, use those instead of Real
.
program SimplePower;
{ Required for Delphi, you can omit it in other Pascals: }
{$APPTYPE CONSOLE}
{ Returns approximate value of e^X using sum of first N terms of Taylor series.
Works fine with X values between 0 and 1.0 and N ~ 30. }
function Exponential(N: Integer; X: Real): Real;
var
I: Integer;
begin
Result := 1.0;
for I := N - 1 downto 1 do
Result := 1.0 + X * Result / I;
end;
{ Binary exponentiation of Base by integer Exponent. }
function IntegerExp(Base: Real; Exponent: Integer): Real;
begin
Result := 1.0;
while Exponent > 0 do
begin
if Odd(Exponent) then
Result := Result * Base;
Base := Base * Base;
Exponent := Exponent shr 1;
end;
end;
{ Combines IntegerExp function for integral part with
Exponential function for fractional part. }
function MyExp(N: Integer; X: Real): Real;
const
E = 2.7182818284590452353602874713527; { from Google: "e euler" }
var
Factor: Real;
Fraction: Real;
begin
Fraction := Exponential(N, Frac(X));
Factor := IntegerExp(E, Trunc(X));
Result := Factor * Fraction;
end;
{ Simple demo: }
const
N = 30;
X = 73.4567890242421234;
begin
Writeln('MyExp(', N, ', ', X:22:18, ') = ', MyExp(N, X):22:18);
Writeln('Exp(', X:22:18, ') = ', Exp(X):22:18);
end.
Ref:
I did not do anything for negative exponents, but just know that Exp(-x) = 1/Exp(x)
. You could amend MyExp
with that knowledge.