I have a csv file and I am trying to plot the average of some values per month. My csv file is structured as shown below, so I believe that I should group my data daily, then monthly in order to calculate the mean value.
timestamp,heure,lat,lon,impact,type
2007-01-01 00:00:00,13:58:43,33.837,-9.205,10.3,1
2007-01-02 00:00:00,00:07:28,34.5293,-10.2384,17.7,1
2007-01-02 00:00:00,23:01:03,35.0617,-1.435,-17.1,2
2007-01-03 00:00:00,01:14:29,36.5685,0.9043,36.8,1
2007-01-03 00:00:00,05:03:51,34.1919,-12.5061,-48.9,1
I am using this code:
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
df= pd.read_csv("ave.txt", sep=',', names =["timestamp","heure","lat","lon","impact","type"])
daily = df.set_index('timestamp').groupby(pd.TimeGrouper(key='timestamp', freq='D', axis=1), axis=1)['impact'].count()
monthly = daily.groupby(pd.TimeGrouper(freq='M')).mean()
ax = monthly.plot(kind='bar')
plt.show()
But, I keep getting errors like this:
KeyError: 'The grouper name timestamp is not found'
any ideas ??