This is preprocessing function of inception v3 in Keras. It is totally different from other models preprocessing.
def preprocess_input(x):
x /= 255.
x -= 0.5
x *= 2.
return x
1. Why there is no mean subtraction?
2. Why there is no RGB to BGR?
3. Mapping between [-1,1] is normal for this model?
and this is preprocessing function of VGG and ResNet in Keras:
def preprocess_input(x, data_format=None):
if data_format is None:
data_format = K.image_data_format()
assert data_format in {'channels_last', 'channels_first'}
if data_format == 'channels_first':
# 'RGB'->'BGR'
x = x[:, ::-1, :, :]
# Zero-center by mean pixel
x[:, 0, :, :] -= 103.939
x[:, 1, :, :] -= 116.779
x[:, 2, :, :] -= 123.68
else:
# 'RGB'->'BGR'
x = x[:, :, :, ::-1]
# Zero-center by mean pixel
x[:, :, :, 0] -= 103.939
x[:, :, :, 1] -= 116.779
x[:, :, :, 2] -= 123.68
return x
Also Caffe models use mean subtraction and RGB to BGR.