Here's a quick implementation--but it creates the square redundant distance matrix as an intermediate step:
In [128]: import numpy as np
In [129]: from scipy.spatial.distance import squareform
c
is the condensed form of the distance matrix:
In [130]: c = np.array([1, 2, 3, 4, 5, 6])
d
is the redundant square distance matrix:
In [131]: d = squareform(c)
Here's your condensed lower triangle distances:
In [132]: d[np.tril_indices(d.shape[0], -1)]
Out[132]: array([1, 2, 4, 3, 5, 6])
Here's a method that avoids forming the redundant distance matrix. The function condensed_index(i, j, n)
takes the row i
and column j
of the redundant distance matrix, with j
> i
, and returns the corresponding index in the condensed distance array.
In [169]: def condensed_index(i, j, n):
...: return n*i - i*(i+1)//2 + j - i - 1
...:
As above, c
is the condensed distance array.
In [170]: c
Out[170]: array([1, 2, 3, 4, 5, 6])
In [171]: n = 4
In [172]: i, j = np.tril_indices(n, -1)
Note that the arguments are reversed in the following call:
In [173]: indices = condensed_index(j, i, n)
indices
gives the desired permutation of the condensed distance array.
In [174]: c[indices]
Out[174]: array([1, 2, 4, 3, 5, 6])
(Basically the same function as condensed_index(i, j, n)
was given in several answers to this question.)