Your calculation of the array index is wrong. This line:
if(scanf("%d", &a[n - 1 - i]) == 1){
assumes the initial value of n
, but at the same time, you decrease n
with every recursion step. That being said, it shouldn't crash but just repeatedly write the first element of a
, because with i = n - 1
, n - 1 - i
is always zero.
The idiomatic way to write such a recursion would be to recurse on i
:
void read_array(int *a, int n, int i)
{
if (i < n)
{
if(scanf("%d", &a[i]) == 1)
{
read_array(a, n, i+1);
}
}
}
and call it with the initial value for i
, e.g. read_array(a, 10, 0)
for reading a 10-element array.
In practice, recursion in C is to be avoided.*
* Functional languages can typically optimize recursion, C just uses the call stack with a lot of overhead.
In this example, the theoretical purpose of recursion for writing a pure function is somewhat defeated with a function returning void
. If this is just about learning the principle, the functions actually should return something. You could for example create a functional "list builder":
#include <stdio.h>
#include <stdlib.h>
// place the side effect in a separate function
int getValue(void)
{
// could have `scanf()` here:
return rand();
}
typedef struct List
{
int a[10];
size_t length;
} List;
// non-functional helper to get around limitations of C:
// (if it could initialize result directly with the new values, it would
// be functional)
List listAppend(List list, int val)
{
List result = list;
result.a[result.length++] = val;
return result;
}
// recursive function without side effects:
List buildList(List list, int (*value)())
{
if (list.length >= 10) return list;
return buildList(listAppend(list, value()), value);
}
int main(void)
{
List myList = buildList((List){0}, &getValue);
for (size_t i = 0; i < myList.length; ++i)
{
printf("myList.a[%zu] is %d\n", i, myList.a[i]);
}
}