I currently have code that allows one to take a combinatorial (cartesian) product across a particular axis. This is in numpy, and originated from a previous question Efficient axis-wise cartesian product of multiple 2D matrices with Numpy or TensorFlow
A = np.array([[1,2],
[3,4]])
B = np.array([[10,20],
[5,6]])
C = np.array([[50, 0],
[60, 8]])
cartesian_product( [A,B,C], axis=1 )
>> np.array([[ 1*10*50, 1*10*0, 1*20*50, 1*20*0, 2*10*50, 2*10*0, 2*20*50, 2*20*0]
[ 3*5*60, 3*5*8, 3*6*60, 3*6*8, 4*5*60, 4*5*8, 4*6*60, 4*6*8]])
and to reiterate the solution:
L = [A,B,C] # list of arrays
n = L[0].shape[0]
out = (L[1][:,None]*L[0][:,:,None]).reshape(n,-1)
for i in L[2:]:
out = (i[:,None]*out[:,:,None]).reshape(n,-1)
Is there an existing method to perform this with broadcasting in tensorflow - without a for loop?