I am trying to fine-tune pre-trained Inceptionv3 in Keras for a multi-label (17) prediction problem.
Here's the code:
# create the base pre-trained model
base_model = InceptionV3(weights='imagenet', include_top=False)
# add a new top layer
x = base_model.output
predictions = Dense(17, activation='sigmoid')(x)
# this is the model we will train
model = Model(inputs=base_model.input, outputs=predictions)
# we need to recompile the model for these modifications to take effect
# we use SGD with a low learning rate
from keras.optimizers import SGD
model.compile(loss='binary_crossentropy', # We NEED binary here, since categorical_crossentropy l1 norms the output before calculating loss.
optimizer=SGD(lr=0.0001, momentum=0.9))
# Fit the model (Add history so that the history may be saved)
history = model.fit(x_train, y_train,
batch_size=128,
epochs=1,
verbose=1,
callbacks=callbacks_list,
validation_data=(x_valid, y_valid))
But I got into the following error message and had trouble deciphering what it is saying:
ValueError: Error when checking target: expected dense_1 to have 4 dimensions, but got array with shape (1024, 17)
It seems to have something to do with that it doesn't like my one-hot encoding for the labels as target. But how do I get 4 dimensions target?