I used tensorflow to train LSTM
language model, code is from here.
According to article here, it seems that if I use pre-trained word2vec, it works better.
Using word embeddings such as word2vec and GloVe is a popular method to improve the accuracy of your model. Instead of using one-hot vectors to represent our words, the low-dimensional vectors learned using word2vec or GloVe carry semantic meaning – similar words have similar vectors. Using these vectors is a form of pre-training.
So, I want to use word2vec
to redo the training, but I am a little bit confused about how to do this.
The embedding code goes here:
with tf.device("/cpu:0"):
embedding = tf.get_variable(
"embedding", [vocab_size, size], dtype=data_type())
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
How can I change this code to use pre-trained word2vec
?