I'm trying to convert a tutorial from Keras to TF. I'm getting the following error:
Traceback (most recent call last):
File "/Users/spicyramen/Documents/Development/google/python/machine_learning/deep_learning/exercise1_tf.py", line 64, in <module>
sess.run(train_step, feed_dict=train_data)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 789, in run
run_metadata_ptr)
File "/Library/Python/2.7/site-packages/tensorflow/python/client/session.py", line 975, in _run
% (np_val.shape, subfeed_t.name, str(subfeed_t.get_shape())))
ValueError: Cannot feed value of shape (768,) for Tensor u'Placeholder_1:0', which has shape '(?, 1)'
This seems to be related in how I'm passing the target labels and how my placeholder value is declared. When I return the labels I have this:
>>> dataset[:, 8].shape
(768,)
>>> dataset[:, 0:8].shape
(768, 8)
Code
import tensorflow as tf
import numpy as np
print("Tensorflow version: " + tf.__version__)
tf.set_random_seed(0)
FILENAME = 'pima-indians-diabetes.csv'
_LEARNING_RATE = 0.003
_NUM_FEATURES = 8
_NUM_LABELS = 1
_NUM_EPOCHS = 150
_BATCH_SIZE = 10
def import_data(filename):
if filename:
dataset = np.loadtxt(filename, delimiter=",")
return dataset[:, 0:8], dataset[:, 8]
# create placeholder. Dataset contains _NUM_FEATURES features:
X = tf.placeholder(tf.float32, [None, _NUM_FEATURES])
Y_ = tf.placeholder(tf.float32,[None, _NUM_LABELS]) # Placeholder for correct answers
# weights and biases
W = tf.Variable(tf.random_normal([_NUM_FEATURES, _NUM_LABELS],
mean=0,
stddev=0.1,
name='weights'))
b = tf.Variable(tf.random_normal([1, _NUM_LABELS],
mean=0,
stddev=0.1,
name='bias'))
# activation function
Y = tf.nn.relu(tf.matmul(X, W) + b, name='activation')
# cost function i.e. sigmoid_cross_entropy_with_logits
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits(labels=Y_, logits=Y, name='loss_function')
optimizer = tf.train.AdamOptimizer(_LEARNING_RATE) # Formal derivation
train_step = optimizer.minimize(cross_entropy)
# cost function i.e. RMSE
# cross_entropy = tf.nn.l2_loss(Y - Y_, name="squared_error_cost")
# optimizer = tf.train.GradientDescentOptimizer(_LEARNING_RATE)
# train_step = optimizer.minimize(cross_entropy)
is_correct = tf.equal(tf.argmax(Y, 1), tf.argmax(Y_, 1))
accuracy = tf.reduce_mean(tf.cast(is_correct, tf.float32))
# init
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(_NUM_EPOCHS):
# data
batch_X, batch_Y = import_data(FILENAME)
# train
train_data = {X: batch_X, Y_: batch_Y}
sess.run(train_step, feed_dict=train_data)
a, c = sess.run([accuracy, cross_entropy], feed_dict=train_data)
print(str(i) + ": accuracy:" + str(a) + " loss: " + str(c))