I'm doing a simple sparse matrix exponentiation, a**16
, using scipy-0.17. (Note, not element-wise multiplication). However, on my machines (running Debian stable and Ubuntu LTS) this is ten times slower than using a for loop or doing something silly like a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a
. This doesn't make sense, so I assume I'm doing something wrong, but what?
import scipy.sparse
from time import time
a=scipy.sparse.rand(2049,2049,.002)
print ("Trying exponentiation (a**16)")
t=time()
x=a**16
print (repr(x))
print ("Exponentiation took %f seconds\n" % (time()-t))
print ("Trying expansion (a*a*a*...*a*a)")
t=time()
y=a*a*a*a*a*a*a*a*a*a*a*a*a*a*a*a
print (repr(y))
print ("Expansion took %f seconds\n" % (time()-t))
print ("Trying a for loop (z=z*a)")
t=time()
z=scipy.sparse.eye(2049)
for i in range(16):
z=z*a
print (repr(z))
print ("Looping took %f seconds\n" % (time()-t))
# Sanity check, all approximately the same answer, right?
assert (abs(x-z)>=1e-9).nnz==0
assert (abs(x-y)>=1e-9).nnz==0