With the following dataframe:
import pandas as pd
df=pd.DataFrame(data=[[1,5179530,'rs10799170',8.1548,'E001'], [1,5179530,'rs10799170',8.1548,'E002'], [1,5179530,'rs10799170',8.1548,'E003'], [1,455521,'rs235884',2.584,'E003'], [1,455521,'rs235884',2.584,'E007']], col umns=['CHR','BP','SNP','CM','ANNOT'])
CHR BP SNP CM ANNOT
0 1 5179530 rs10799170 8.1548 E001
1 1 5179530 rs10799170 8.1548 E002
2 1 5179530 rs10799170 8.1548 E003
3 1 455521 rs235884 2.5840 E003
4 1 455521 rs235884 2.5840 E007
I would like to obtain
CHR BP SNP CM E001 E002 E003 E007
0 1 5179530 rs10799170 8.1548 1 1 1 0
1 1 455521 rs235884 2.5840 0 0 1 1
I tried groupby()
and get_dummies()
separately
df.groupby(['CHR','BP','SNP','CM']).sum()
CHR BP SNP CM ANNOT
1 455521 rs235884 2.5840 E003E007
5179530 rs10799170 8.1548 E001E002E003
pd.get_dummies(df['ANNOT'])
E001 E002 E003 E007
0 1 0 0 0
1 0 1 0 0
2 0 0 1 0
3 0 0 1 0
4 0 0 0 1
But I don't know how to combine both or if there is another way.