Roughly speaking, Haskell does its category theory all in just one category, whose objects are Haskell types and whose arrows are functions between these types. It's definitely not a general-purpose language for modelling category theory.
A (mathematical) functor is an operation turning things in one category into things in another, possibly entirely different, category. An endofunctor is then a functor which happens to have the same source and target categories. In Haskell, a functor is an operation turning things in the category of Haskell types into other things also in the category of Haskell types, so it is always an endofunctor.
[If you're following the mathematical literature, technically, the operation '(a->b)->(m a -> m b)' is just the arrow part of the endofunctor m, and 'm' is the object part]
When Haskellers talk about working 'in a monad' they really mean working in the Kleisli category of the monad. The Kleisli category of a monad is a thoroughly confusing beast at first, and normally needs at least two colours of ink to give a good explanation, so take the following attempt for what it is and check out some references (unfortunately Wikipedia is useless here for all but the straight definitions).
Suppose you have a monad 'm' on the category C of Haskell types. Its Kleisli category Kl(m) has the same objects as C, namely Haskell types, but an arrow a ~(f)~> b in Kl(m) is an arrow a -(f)-> mb in C. (I've used a squiggly line in my Kleisli arrow to distinguish the two). To reiterate: the objects and arrows of the Kl(C) are also objects and arrows of C but the arrows point to different objects in Kl(C) than in C. If this doesn't strike you as odd, read it again more carefully!
Concretely, consider the Maybe monad. Its Kleisli category is just the collection of Haskell types, and its arrows a ~(f)~> b are functions a -(f)-> Maybe b. Or consider the (State s) monad whose arrows a ~(f)~> b are functions a -(f)-> (State s b) == a -(f)-> (s->(s,b)). In any case, you're always writing a squiggly arrow as a shorthand for doing something to the type of the codomain of your functions.
[Note that State is not a monad, because the kind of State is * -> * -> *, so you need to supply one of the type parameters to turn it into a mathematical monad.]
So far so good, hopefully, but suppose you want to compose arrows a ~(f)~> b and b ~(g)~> c. These are really Haskell functions a -(f)-> mb and b -(g)-> mc which you cannot compose because the types don't match. The mathematical solution is to use the 'multiplication' natural transformation u:mm->m of the monad as follows: a ~(f)~> b ~(g)~> c == a -(f)-> mb -(mg)-> mmc -(u_c)-> mc to get an arrow a->mc which is a Kleisli arrow a ~(f;g)~> c as required.
Perhaps a concrete example helps here. In the Maybe monad, you cannot compose functions f : a -> Maybe b and g : b -> Maybe c directly, but by lifting g to
Maybe_g :: Maybe b -> Maybe (Maybe c)
Maybe_g Nothing = Nothing
Maybe_g (Just a) = Just (g a)
and using the 'obvious'
u :: Maybe (Maybe c) -> Maybe c
u Nothing = Nothing
u (Just Nothing) = Nothing
u (Just (Just c)) = Just c
you can form the composition u . Maybe_g . f
which is the function a -> Maybe c that you wanted.
In the (State s) monad, it's similar but messier: Given two monadic functions a ~(f)~> b and b ~(g)~> c which are really a -(f)-> (s->(s,b)) and b -(g)-> (s->(s,c)) under the hood, you compose them by lifting g into
State_s_g :: (s->(s,b)) -> (s->(s,(s->(s,c))))
State_s_g p s1 = let (s2, b) = p s1 in (s2, g b)
then you apply the 'multiplication' natural transformation u, which is
u :: (s->(s,(s->(s,c)))) -> (s->(s,c))
u p1 s1 = let (s2, p2) = p1 s1 in p2 s2
which (sort of) plugs the final state of f
into the initial state of g
.
In Haskell, this turns out to be a bit of an unnatural way to work so instead there's the (>>=)
function which basically does the same thing as u but in a way that makes it easier to implement and use. This is important: (>>=)
is not the natural transformation 'u'. You can define each in terms of the other, so they're equivalent, but they're not the same thing. The Haskell version of 'u' is written join
.
The other thing missing from this definition of Kleisli categories is the identity on each object: a ~(1_a)~> a which is really a -(n_a)-> ma where n is the 'unit' natural transformation. This is written return
in Haskell, and doesn't seem to cause as much confusion.
I learned category theory before I came to Haskell, and I too have had difficulty with the mismatch between what mathematicians call a monad and what they look like in Haskell. It's no easier from the other direction!