I'm not so sure this is the most efficient approach, but it's fairly transparent. The idea here is to define the problem in recursive (or inductive) "layers":
% multiply_lists(ListOfLists, MultipliedListOfLists)
%
% The first two clauses handle the case where ListOfLists consists
% of just one list
% The third clause handles the general case
%
multiply_lists([[X]], [[X]]).
multiply_lists([[X|Xs]], [[X]|T]) :-
multiply_lists([Xs], T).
multiply_lists([E|Es], R) :-
multiply_lists(Es, R1),
multiply_list(E, R1, R).
% multiply_list relates the product of a list of lists and a single list
% of elements
%
multiply_list([], _, []).
multiply_list([E|Es], L, Ls) :-
multiply_list(Es, L, LL),
multiply_element(E, L, LL, Ls).
% multiply_element relates the product, prepended to a given list,
% of a single list of lists and a single element
%
multiply_element(_, [], A, A).
multiply_element(X, [Y|Ys], A, [[X|Y]|T]) :-
multiply_element(X, Ys, A, T).
multiply_element/4
actually combines two rules into one: it defines multiplication of a list by a single element, and prepends those results as individual elements to a given list.
A sample result:
| ?- multiply_lists([[1, 2], [1, 2, 3]], L).
L = [[1,1],[1,2],[1,3],[2,1],[2,2],[2,3]] ? ;
no
| ?- multiply_lists([[a,b,c], [1,2], [x,y]], L).
L = [[a,1,x],[a,1,y],[a,2,x],[a,2,y],[b,1,x],[b,1,y],[b,2,x],[b,2,y],[c,1,x],[c,1,y],[c,2,x],[c,2,y]] ? ;
no
Some quirks with the above implementation:
- It's not tail recursive (so will use more stack as the lists get longer)
- It leaves a choice point
But it does illustrate how the problem can be solved without using append/3
or other list-based pre-defined predicates.