0

So for example, if I run this piece of code:

import tensorflow as tf
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
# Creates a session with log_device_placement set to True.
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
print(sess.run(c))

Then I would get this:

    2017-06-24 10:20:57.441289: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:20:57.442069: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:20:57.443010: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:20:57.444615: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:20:57.445662: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:20:57.446273: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:20:57.447475: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:20:57.448190: W c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\platform\cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
2017-06-24 10:21:01.548276: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:940] Found device 0 with properties: 
name: GeForce GTX 1060
major: 6 minor: 1 memoryClockRate (GHz) 1.6705
pciBusID 0000:01:00.0
Total memory: 6.00GiB
Free memory: 5.01GiB
2017-06-24 10:21:01.549636: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:961] DMA: 0 
2017-06-24 10:21:01.550040: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:971] 0:   Y 
2017-06-24 10:21:01.550479: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\gpu\gpu_device.cc:1030] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0)
Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0
2017-06-24 10:21:01.910806: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\direct_session.cc:265] Device mapping:
/job:localhost/replica:0/task:0/gpu:0 -> device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0

MatMul: (MatMul): /job:localhost/replica:0/task:0/gpu:0
b: (Const): /job:localhost/replica:0/task:0/gpu:0
a: (Const): /job:localhost/replica:0/task:0/gpu:0
2017-06-24 10:21:01.918147: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\simple_placer.cc:847] MatMul: (MatMul)/job:localhost/replica:0/task:0/gpu:0
2017-06-24 10:21:01.918794: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\simple_placer.cc:847] b: (Const)/job:localhost/replica:0/task:0/gpu:0
2017-06-24 10:21:01.919403: I c:\tf_jenkins\home\workspace\release-win\m\windows-gpu\py\35\tensorflow\core\common_runtime\simple_placer.cc:847] a: (Const)/job:localhost/replica:0/task:0/gpu:0
[[ 22.  28.]
 [ 49.  64.]]

The warnings always come up and its extremely annoying. I have tried using other solution such as:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf

But it still gave me the same warnings. Two things, how can I get rid of the warnings? Is tensorflow using just GPU?

  • Possible duplicate of [How to compile Tensorflow with SSE4.2 and AVX instructions?](https://stackoverflow.com/questions/41293077/how-to-compile-tensorflow-with-sse4-2-and-avx-instructions) – E_net4 Jun 24 '17 at 10:28

2 Answers2

1

There warnings caused by building parameters. Recompile your tensorflow with parameter bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=-msse --copt=-msse2 --copt=-msse3 --copt=-msse4.1 --copt=-msse4.2 --copt=-mfpmath=both --config=cuda -k //tensorflow/tools/pip_package:build_pip_package will solve the problem

Tianjin Gu
  • 784
  • 6
  • 17
1

You are getting this info dump, because you are starting your Session explicitly with the instruction to show them:

sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

the log_device_placement=True bit is intended specifically to demonstrate which operations are performed on which devices (for example to demonstrate that the GPU is indeed utilized properly, etc.)

If you don't want to see this info, simply start the session without such options:

sess = tf.Session()

Having this bit is still helpful however:

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

Because TF might show you other warnings that you might find annoying/unnecessary, so I'd suggest keeping this line (but in my experience that doesn't have any effect on Windows, only on Mac and Linux)

VS_FF
  • 2,353
  • 3
  • 16
  • 34