5

I have a big dataset contains numeric data and in some of its rows there are variable spaces delimiting columns, like:

4 5 6
7  8    9
2 3 4

When I use this line:

dataset=numpy.loadtxt("dataset.txt", delimiter=" ")

I get this error:

ValueError: Wrong number of columns at line 2

How can I change the code to ignore multiple spaces as well?

Mo-
  • 790
  • 2
  • 10
  • 23

2 Answers2

8

The default for delimiter is 'any whitespace'. If you leave loadtxt out, it copes with multiple spaces.

>>> from io import StringIO
>>> dataset = StringIO('''\
... 4 5 6
... 7 8     9
... 2 3 4''')
>>> import numpy
>>> dataset_as_numpy = numpy.loadtxt(dataset)
>>> dataset_as_numpy
array([[ 4.,  5.,  6.],
       [ 7.,  8.,  9.],
       [ 2.,  3.,  4.]])
Bill Bell
  • 21,021
  • 5
  • 43
  • 58
2

Use the numpy.genfromtxt function:

>>> import numpy as np
>>> dataset = np.genfromtxt(dataset.txt) 
>>> print dataset
array([[   4.,    5.,    6.],
       [   7.,    8.,   19.],
       [   2.,    3.,    4.],
       [   1.,    3.,  204.]])

This is from the numpy documentation:

By default, genfromtxt assumes delimiter=None, meaning that the line is split along white spaces (including tabs) and that consecutive white spaces are considered as a single white space.

Hope this helps!

Henry Ecker
  • 34,399
  • 18
  • 41
  • 57
Sid
  • 21
  • 2