My Problem is the following. I want to sort a list of types based on a list of constexpr values. The problem can be boiled down to this function:
template <typename U, typename V>
auto min(U,V) -> std::conditional_t<U::value < V::value, U, V>
{ return {}; }
whereas value must be some static constexpr member of each type, respecively. The following snippet demonstrates the usage:
// (I)
// This must even be declared outside of a function body due to the statics :(
struct X { static constexpr double value = 2.; };
struct Y { static constexpr double value = 1.; };
int main()
{
X x;
Y y;
auto z = min(x,y);
std::cout << typeid(z).name() << " : " << z.value << std::endl;
}
My goal is to provide the value as I call the function. The closest thing I got to this goal is the following
template <double (*F)()>
struct Value { static constexpr double value = F(); };
which can be called like this using lambdas:
// (II)
auto w = min(Value<[]{ return 3.14; }>{}, Value<[]{ return 2.71; }>{});
std::cout << typeid(w).name() << " : " << w.value << std::endl;
The actual type to be sorted can be an additional parameter.
The problem is that the above is not valid C++ according to the standard. However, the latest clang does compile this gracefully.
Now, my question is: Is there another standard compliant way to achieve the above (listing (II)), that is, defining a function that computes a type based on constexor objects provided inplace (in some way) as the function argument?
P.S.: I'm aware of the solution using std::integral_constant
. This, however, is limited to integral types only. I'm interested in a solution that works for all constexpr objects, in particular floating point types, and strings.