I used Eigen to calculate inner product of two matrix, the first one is A=(BC).eval() and second one is D=(EF).eval(). Here B,C,E,F are the same size (1500 * 1500) but with different values. I find the first one cost about 200 ms while the second one cost about 6000 ms, I have no idea why this happened.
#include <iostream>
#include <time.h>
#include "Eigen/Dense"
int main() {
clock_t start, stop;
Eigen::MatrixXf mat_a(1200, 1500);
Eigen::MatrixXf mat_b(1500, 1500);
Eigen::MatrixXf mat_r(1000, 1300);
int i, j;
float c = 0;
for (i = 0; i < 1200; i++) {
for (j = 0; j < 1500; j++) {
mat_a(i, j) = (float)(c/3 * 1.0e-40);
//if (i % 2 == 0 && j % 2 == 0) mat_a(i, j);
c++;
}
}
//std::cout << mat_a.row(0) << std::endl;
c = 100;
for (i = 0; i < 1500; i++) {
for (j = 0; j < 1500; j++) {
mat_b(i, j) = (float)(c/3 * 0.5e-10);
c++;
}
}
//std::cout << mat_b.row(0) << std::endl;
start = clock();
mat_r = mat_a * mat_b;
stop = clock();
std::cout << stop - start << std::endl;
getchar();
return 0;
}
as show in above example code. I find this is caused by the value of the matrix, when mat_a has value about e-40 and mat_b has value about e-10, this problem occurs stably.
Is there anyone who can explain it?