I have a database comprising of the following schema depicting the linkage between individuals who connect with multiple Advisors and these Advisors have affiliations with multiple organizations
Individuals--> Advisors (m:n relationship)
Advisors --> Enterprises (m:n relationship)
The business need is to enable search on all these concepts and organize results around AdvisorIds. As an example, display of a search result could be as follows
a) Advisor1-> connected to Individuals A,B,C; and linked to Enterprises X,Y
b) Advisor2-> connected to Individuals A, E; and linked to Enterprises M,X,Z
Towards this, we created a flattened table on these concepts and the relationship between them. Hence the same AdvisorId would appear in multiple rows
When I search for a string, I want to ensure that ALL records around an AdvisorId to be returned together irrespective of search score of the individual records.
One approach could be
a) first run an Azure Search and get a result of AdvisorId, ordered by search score of each record. This will repeat Advisor Ids
b) take a distinct set of AdvisorIds (across pages) via standard SQL
c) for each AdvisorId, pick all the related records via standard SQL
2 questions
Here a lot of processing in (b) and (c) will be done outside Azure leading to delays. Also, if I were to use pagination for (a), I am never sure of number of AdvisorId's, I end up with after the distinct operation
I wanted to check if there is a way to get the nested search implemented in Azure to do (a), (b) and (c) as a single API call
If I were to use facets for handling (a) and (b) together, how do I ensure that the ordering is based on the best search-score document within a facet