What you want is a type trait that tests if the type is a scalar and then switches on that
template <typename Type>
using ConstRefFast = std::conditional_t<
std::is_scalar<std::decay_t<Type>>::value,
std::add_const_t<Type>,
std::add_lvalue_reference_t<std::add_const_t<std::decay_t<Type>>>
>;
And then pass an object by reference like this
template <typename Type>
void foo(typename ConstRefFast<Type>::type val);
Note that this means that the function will not be able to deduce the type T
automatically anymore. But in some situations it might give you what you want.
Note that when it comes to template functions, sometimes the question of ownership is more important than just whether you want to pass the value by const ref or by value.
For example consider a method that accepts a shared_ptr
to some type T
and does some processing on that pointer (either at some point in the future or immediately), you have two options
void insert_ptr(std::shared_ptr<T> ptr);
void insert_ptr(const std::shared_ptr<T>& ptr);
When the user looks at both of these functions, one conveys meaning and semantics clearly while the other just leaves questions in their mind. The first one obviously makes a copy of the pointer before the method starts, thus incrementing the ref count. But the second one's semantics is not quite clear. In an asynchronous setting this might leave room for doubt in the user's mind. Is my pointer going to be safely used (and object safely released) if for example the pointed to object is used at some point in the future asynchronously?
You can also consider another case that does not consider asynchronous settings. A container that copies values of type T
into internal storage
template <typename T>
class Container {
public:
void set_value(T val) {
this->insert_into_storage(std::move(val));
}
};
or
template <typename T>
class Container {
public:
void set_value(const T& val) {
this->insert_into_storage(val);
}
};
Here the first one does convey the fact the value is copied into the method, after which the container presumably stores the value internally. But if the question of lifetime of the copied object is not important, then the second one is more efficient, simply because it avoids an extra move.
So in the end it just comes down to whether you need clarity of your API or performance.