There are far fewer repeated combinations than repeated permutations, so let's find the repeated combinations that sum to the given value, then permute each of those. Moreover, by applying uniq
at each of several steps of the calculation we can significantly reduce the number of repeated combinations and permutations considered.
Code
require 'set'
def rep_perms_for_all(arr, n_arr, tot)
n_arr.flat_map { |n| rep_perms_for_1(arr, n, tot) }
end
def rep_perms_for_1(arr, n, tot)
rep_combs_to_rep_perms(rep_combs_for_1(arr, n, tot)).uniq
end
def rep_combs_for_1(arr, n, tot)
arr.repeated_combination(n).uniq.select { |c| c.sum == tot }
end
def rep_combs_to_rep_perms(combs)
combs.flat_map { |c| comb_to_perms(c) }.uniq
end
def comb_to_perms(comb)
comb.permutation(comb.size).uniq.uniq do |p|
p.size.times.with_object(Set.new) { |i,s| s << p.rotate(i) }
end
end
Examples
rep_perms_for_all([2,3,4,5], [3], 12)
#=> [[2, 5, 5], [3, 4, 5], [3, 5, 4], [4, 4, 4]]
rep_perms_for_all([2,3,4,5,6,7,8], [3,4,5], 16).size
#=> 93
rep_perms_for_all([2,3,4,5,6,7,8], [3,4,5], 16)
#=> [[2, 6, 8], [2, 8, 6], [2, 7, 7], [3, 5, 8], [3, 8, 5], [3, 6, 7],
# [3, 7, 6], [4, 4, 8], [4, 5, 7], [4, 7, 5], [4, 6, 6], [5, 5, 6],
# [2, 2, 4, 8], [2, 2, 8, 4], [2, 4, 2, 8], [2, 2, 5, 7], [2, 2, 7, 5],
# [2, 5, 2, 7], [2, 2, 6, 6], [2, 6, 2, 6], [2, 3, 3, 8], [2, 3, 8, 3],
# ...
# [3, 3, 3, 7], [3, 3, 4, 6], [3, 3, 6, 4], [3, 4, 3, 6], [3, 3, 5, 5],
# [3, 5, 3, 5], [3, 4, 4, 5], [3, 4, 5, 4], [3, 5, 4, 4], [4, 4, 4, 4],
# ...
# [2, 2, 4, 5, 3], [2, 2, 5, 3, 4], [2, 2, 5, 4, 3], [2, 3, 2, 4, 5],
# [2, 3, 2, 5, 4], [2, 3, 4, 2, 5], [2, 3, 5, 2, 4], [2, 4, 2, 5, 3],
# ...
# [2, 5, 3, 3, 3], [2, 3, 3, 4, 4], [2, 3, 4, 3, 4], [2, 3, 4, 4, 3],
# [2, 4, 3, 3, 4], [2, 4, 3, 4, 3], [2, 4, 4, 3, 3], [3, 3, 3, 3, 4]]
Explanation
rep_combs_for_1
uses the method Enumerable#sum, which made its debut in Ruby v2.4. For earlier versions, use c.reduce(:0) == tot
.
In comb_to_perms
, the first uniq
simply removes duplicates. The second uniq
, with a block, removes all but one of the p.size
elements (arrays) that can be obtained by rotating any of the other p-1
elements. For example,
p = [1,2,3]
p.size.times.with_object(Set.new) { |i,s| s << p.rotate(i) }
#=> #<Set: {[1, 2, 3], [2, 3, 1], [3, 1, 2]}>