I am trying to calculate multiple colums from multiple columns in a pandas dataframe using a function. The function takes three arguments -a-, -b-, and -c- and and returns three calculated values -sum-, -prod- and -quot-. In my pandas data frame I have three coumns -a-, -b- and and -c- from which I want to calculate the columns -sum-, -prod- and -quot-.
The mapping that I do works only when I have exactly three rows. I do not know what is going wrong, although I expect that it has to do something with selecting the correct axis. Could someone explain what is happening and how I can calculate the values that I would like to have. Below are the situations that I have tested.
INITIAL VALUES
def sum_prod_quot(a,b,c):
sum = a + b + c
prod = a * b * c
quot = a / b / c
return (sum, prod, quot)
df = pd.DataFrame({ 'a': [20, 100, 18],
'b': [ 5, 10, 3],
'c': [ 2, 10, 6],
'd': [ 1, 2, 3]
})
df
a b c d
0 20 5 2 1
1 100 10 10 2
2 18 3 6 3
CALCULATION STEPS
Using exactly three rows
When I calculate three columns from this dataframe and using the function function I get:
df['sum'], df['prod'], df['quot'] = \
list( map(sum_prod_quot, df['a'], df['b'], df['c']))
df
a b c d sum prod quot
0 20 5 2 1 27.0 120.0 27.0
1 100 10 10 2 200.0 10000.0 324.0
2 18 3 6 3 2.0 1.0 1.0
This is exactly the result that I want to have: The sum-column has the sum of the elements in the columns a,b,c; the prod-column has the product of the elements in the columns a,b,c and the quot-column has the quotients of the elements in the columns a,b,c.
Using more than three rows
When I expand the dataframe with one row, I get an error!
The data frame is defined as:
df = pd.DataFrame({ 'a': [20, 100, 18, 40],
'b': [ 5, 10, 3, 10],
'c': [ 2, 10, 6, 4],
'd': [ 1, 2, 3, 4]
})
df
a b c d
0 20 5 2 1
1 100 10 10 2
2 18 3 6 3
3 40 10 4 4
The call is
df['sum'], df['prod'], df['quot'] = \
list( map(sum_prod_quot, df['a'], df['b'], df['c']))
The result is
...
list( map(sum_prod_quot, df['a'], df['b'], df['c']))
ValueError: too many values to unpack (expected 3)
while I would expect an extra row:
df
a b c d sum prod quot
0 20 5 2 1 27.0 120.0 27.0
1 100 10 10 2 200.0 10000.0 324.0
2 18 3 6 3 2.0 1.0 1.0
3 40 10 4 4 54.0 1600.0 1.0
Using less than three rows
When I reduce tthe dataframe with one row I get also an error. The dataframe is defined as:
df = pd.DataFrame({ 'a': [20, 100],
'b': [ 5, 10],
'c': [ 2, 10],
'd': [ 1, 2]
})
df
a b c d
0 20 5 2 1
1 100 10 10 2
The call is
df['sum'], df['prod'], df['quot'] = \
list( map(sum_prod_quot, df['a'], df['b'], df['c']))
The result is
...
list( map(sum_prod_quot, df['a'], df['b'], df['c']))
ValueError: need more than 2 values to unpack
while I would expect a row less:
df
a b c d sum prod quot
0 20 5 2 1 27.0 120.0 27.0
1 100 10 10 2 200.0 10000.0 324.0
QUESTIONS
The questions I have:
1) Why do I get these errors?
2) How do I have to modify the call such that I get the desired data frame?
NOTE
In this link a similar question is asked, but the given answer did not work for me.