I want to use some customized image preprocessing function along with ImageDataGenerator function in Keras. For example, my customized function looks like this:
def customizedDataAugmentation(x):
choice = np.random.choice(np.arange(1, 4), p=[0.3, 0.3, 0.4])
if choice==1:
x = exposure.adjust_gamma(x, np.random.uniform(0.5,1.5))
elif choice==2:
ix = Image.fromarray(np.uint8(x))
blurI = ix.filter(ImageFilter.GaussianBlur(np.random.uniform(0.1,2.5)))
x = np.asanyarray(blurI)
return x
And the way to use it is like:
self.train_datagen = image.ImageDataGenerator(
rescale=1./255,
zoom_range=0.15,
height_shift_range=0.1,
horizontal_flip=True,
preprocessing_function=customizedDataAugmentation
)
However, when I start training, it jumps out this error:
Traceback (most recent call last):
File "/home/joseph/miniconda3/envs/py27/lib/python2.7/threading.py", line 801, in __bootstrap_inner
self.run()
File "/home/joseph/miniconda3/envs/py27/lib/python2.7/threading.py", line 754, in run
self.__target(*self.__args, **self.__kwargs)
File "/home/joseph/miniconda3/envs/py27/lib/python2.7/site-packages/keras/utils/data_utils.py", line 560, in data_generator_task
generator_output = next(self._generator)
File "/home/joseph/miniconda3/envs/py27/lib/python2.7/site-packages/keras/preprocessing/image.py", line 1039, in next
x = self.image_data_generator.standardize(x)
File "/home/joseph/miniconda3/envs/py27/lib/python2.7/site-packages/keras/preprocessing/image.py", line 494, in standardize
x *= self.rescale
ValueError: output array is read-only
self.image_data_generator.standardize(x)
is the function that calls the customized function. The definition looks something like this:
def standardize(self, x):
if self.preprocessing_function:
x = self.preprocessing_function(x)
if self.rescale:
x *= self.rescale
....
If I don't call my customized function I wouldn't have this error though. Anyone knows what's happening?