As a beginner in Erlang, I am working my way through the Programming Erlang book (2nd ed). I have a very hard time grasping how to store and periodically update external information (such as intermittent user input) using the principles of functional programming exclusively.
To take my present example, I am now in the beginning of the concurrent programming section (Chapter 12) where the book talks about the area server. Below is my variant of it.
As an exercise, I am trying to add to this module a way to store all the requests the user makes. But despite having a bit of experience with recursive programming the lack of mutable variables, in the sense of imperative languages, seems to be crippling in this particular instance.
I have tried looking up a few related resources on SE sites such as mutable state in functional programming and immutability in fp but it doesn't really answer my question in a practical way. I know that what I am trying to accomplish can be done by use of the ETS (or even a database), or by using the process-memory of a new process which receives and maintains the history within itself.
But what I would really like to understand (and the point of this question) is if this can be accomplished using generic functional programming principles without having to use Erlang-specific tools. The commented out lines in the code segment indicate what I am naively expecting the first steps to look like.
-module(geometry_server4).
-export([start/0, client/2, loop/0]).
start() ->
spawn(geometry_server4, loop, []).
client(Pid_server, Geom_tuple) ->
Pid_server ! {self(), Geom_tuple},
%ok = storerequests(Geom_tuple),
receive
{area, Pid_server, Area} -> io:format("Client: Area of ~p is ~p~n", [Geom_tuple, Area]);
{error, Error} -> io:format("~p~n", [Error])
end.
%storerequests(Geom_tuple) -> addtolist(Geom_tuple, get_history()).
%
%addtolist(Item, History) ->
% [Item | History].
%get_history() -> ???
loop() ->
receive
{Client, {rectangle, S1, S2}} ->
Area = S1 * S2,
Client ! {area, self(), Area},
loop();
{Client, {square, S}} ->
Area = S * S,
Client ! {area, self(), Area},
loop();
{Client, _} ->
Client ! {error, "invalid parameters"},
loop()
end.
Based on the book, this toy server gets called in the terminal as:
1> c(geometry_server4).
2> P = geometry_server4:start().
3> geometry_server4:client(P, {square, 3}).