I have put together a simple Python script which reads a large list of algebraic expressions from a text file on separate lines, evaluates the mathematics on each line and puts it into a numpy array. The eigenvalues of this matrix are then found. The parameters A,B,C will then be changed and the program run again, hence a function is used to achieve this.
Some of these text files will have millions of lines of equations, so after profiling the code I found that the eval
command accounts for approximately 99% of the execution time. I am aware of the dangers of using eval
but this code will only ever be used by myself. All other parts of the code are fast, except the call to eval
.
Here is the code where mat_size
is set to 500 which represents a 500*500 array meaning 250,000 lines of equations are being read in from the file. I cannot provide the file as it is ~ 0.5GB in size, but have provided an example of what it looks like below and it only uses basic mathematical operations.
import numpy as np
from numpy import *
from scipy.linalg import eigvalsh
mat_size = 500
# Read the file line by line
with open("test_file.txt", 'r') as f:
lines = f.readlines()
# Function to evaluate the maths and build the numpy array
def my_func(A,B,C):
lst = []
for i in lines:
# Strip the \n
new = eval(i.rstrip())
lst.append(new)
# Build the numpy array
AA = np.array(lst,dtype=np.float64)
# Resize it to mat_size
matt = np.resize(AA,(mat_size,mat_size))
return matt
# Function to find eigenvalues of matrix
def optimise(x):
A,B,C = x
test = my_func(A,B,C)
ev=-1*eigvalsh(test)
return ev[-(1)]
# Define what A,B,C are, this can be changed each time the program is run
x0 = [7.65,5.38,4.00]
# Print result
print(optimise(x0))
A few lines of an example input text file: (mat_size
can be changed to 2 to run this file)
.5/A**3*B**5+C
35.5/A**3*B**5+3*C
.8/C**3*A**5+C**9
.5/A*3+B**5-C/45
I am aware eval
is usually bad practice and slow, so I looked for other means to achieving a speed up. I tried methods outlined here but none of these appeared to work. I also tried applying sympy to the problem but that caused a massive slowdown. What is a better way of going about this problem?
EDIT
From the suggestion to use numexpr
instead, I have come across an issue where it grinds to a halt compared to the standard eval
. For some instances the matrix elements contain quite a lot of algebraic expressions. Here is an example of just one matrix element, i.e one of the equations in the file (it contains a few more terms not defined in the code above, but can be easily defined at top of the code):
-71*A**3/(A+B)**7-61*B**3/(A+B)**7-3/2/B**2/C**2*A**6/(A+B)**7-7/4/B**3/m3*A**6/(A+B)**7-49/4/B**2/C*A**6/(A+B)**7+363/C*A**3/(A+B)**7*z3+451*B**3/C/(A+B)**7*z3-3/2*B**5/C/A**2/(A+B)**7-3/4*B**7/C/A**3/(A+B)**7-1/B/C**3*A**6/(A+B)**7-3/2/B**2/C*A**5/(A+B)**7-107/2/C/m3*A**4/(A+B)**7-21/2/B/C*A**4/(A+B)**7-25/2*B/C*A**2/(A+B)**7-153/2*B**2/C*A/(A+B)**7-5/2*B**4/C/m3/(A+B)**7-B**6/C**3/A/(A+B)**7-21/2*B**4/C/A/(A+B)**7-7/4/B**3/C*A**7/(A+B)**7+86/C**2*A**4/(A+B)**7*z3+90*B**4/C**2/(A+B)**7*z3-1/4*B**6/m3/A**3/(A+B)**7-149/4/B/C*A**5/(A+B)**7-65*B**2/C**3*A**4/(A+B)**7-241/2*B/C**2*A**4/(A+B)**7-38*B**3/C**3*A**3/(A+B)**7+19*B**2/C**2*A**3/(A+B)**7-181*B/C*A**3/(A+B)**7-47*B**4/C**3*A**2/(A+B)**7+19*B**3/C**2*A**2/(A+B)**7+362*B**2/C*A**2/(A+B)**7-43*B**5/C**3*A/(A+B)**7-241/2*B**4/C**2*A/(A+B)**7-272*B**3/C*A/(A+B)**7-25/4*B**6/C**2/A/(A+B)**7-77/4*B**5/C/A/(A+B)**7-3/4*B**7/C**2/A**2/(A+B)**7-23/4*B**6/C/A**2/(A+B)**7-11/B/C**2*A**5/(A+B)**7-13/B**2/m3*A**5/(A+B)**7-25*B/C**3*A**4/(A+B)**7-169/4/B/m3*A**4/(A+B)**7-27*B**2/C**3*A**3/(A+B)**7-47*B/C**2*A**3/(A+B)**7-27*B**3/C**3*A**2/(A+B)**7-38*B**2/C**2*A**2/(A+B)**7-131/4*B/m3*A**2/(A+B)**7-25*B**4/C**3*A/(A+B)**7-65*B**3/C**2*A/(A+B)**7-303/4*B**2/m3*A/(A+B)**7-5*B**5/C**2/A/(A+B)**7-49/4*B**4/m3/A/(A+B)**7-1/2*B**6/C**2/A**2/(A+B)**7-5/2*B**5/m3/A**2/(A+B)**7-1/2/B/C**3*A**7/(A+B)**7-3/4/B**2/C**2*A**7/(A+B)**7-25/4/B/C**2*A**6/(A+B)**7-45*B/C**3*A**5/(A+B)**7-3/2*B**7/C**3/A/(A+B)**7-123/2/C*A**4/(A+B)**7-37/B*A**4/(A+B)**7-53/2*B*A**2/(A+B)**7-75/2*B**2*A/(A+B)**7-11*B**6/C**3/(A+B)**7-39/2*B**5/C**2/(A+B)**7-53/2*B**4/C/(A+B)**7-7*B**4/A/(A+B)**7-7/4*B**5/A**2/(A+B)**7-1/4*B**6/A**3/(A+B)**7-11/C**3*A**5/(A+B)**7-43/C**2*A**4/(A+B)**7-363/4/m3*A**3/(A+B)**7-11*B**5/C**3/(A+B)**7-45*B**4/C**2/(A+B)**7-451/4*B**3/m3/(A+B)**7-5/C**3*A**6/(A+B)**7-39/2/C**2*A**5/(A+B)**7-49/4/B**2*A**5/(A+B)**7-7/4/B**3*A**6/(A+B)**7-79/2/C*A**3/(A+B)**7-207/2*B**3/C/(A+B)**7+22/B/C**2*A**5/(A+B)**7*z3+94*B/C**2*A**3/(A+B)**7*z3+76*B**2/C**2*A**2/(A+B)**7*z3+130*B**3/C**2*A/(A+B)**7*z3+10*B**5/C**2/A/(A+B)**7*z3+B**6/C**2/A**2/(A+B)**7*z3+3/B**2/C**2*A**6/(A+B)**7*z3+7/B**3/C*A**6/(A+B)**7*z3+52/B**2/C*A**5/(A+B)**7*z3+169/B/C*A**4/(A+B)**7*z3+131*B/C*A**2/(A+B)**7*z3+303*B**2/C*A/(A+B)**7*z3+49*B**4/C/A/(A+B)**7*z3+10*B**5/C/A**2/(A+B)**7*z3+B**6/C/A**3/(A+B)**7*z3-3/4*B**7/C/m3/A**3/(A+B)**7-7/4/B**3/C/m3*A**7/(A+B)**7-49/4/B**2/C/m3*A**6/(A+B)**7-149/4/B/C/m3*A**5/(A+B)**7-293*B/C/m3*A**3/(A+B)**7+778*B**2/C/m3*A**2/(A+B)**7-480*B**3/C/m3*A/(A+B)**7-77/4*B**5/C/m3/A/(A+B)**7-23/4*B**6/C/m3/A**2/(A+B)**7
numexpr
completely chokes when the matrix elements are of this form, whereas eval
evaluates it instantaneously. For just a 10*10 matrix (100 equations in file) numexpr
takes about 78 seconds to process the file, whereas eval
takes 0.01 seconds. Profiling the code that uses numexpr
reveals that the getExprnames
and precompile
function of numexpr are the causes of the issue with precompile
taking 73.5 seconds of the total time and getExprNames
taking 3.5 seconds of the time. Why would the precompile cause such a bottleneck in this particular calculation along with the getExprNames? Is this module just not well suited to long algebraic expressions?