I'm working in Keras with TensorFlow under the hood. I have a deep neural model (predictive autoencoder). I'm doing something somewhat similar to this: https://arxiv.org/abs/1612.00796 -- I'm trying to understand influence of variables in a given layer on the output.
For this I need to find 2nd derivative (Hessian) of the loss (L) with respect to output of particular layer (s):
Diagonal entries would be sufficient. L is a scalar, s is 1 by n.
What I tried first:
dLds = tf.gradients(L, s) # works fine to get first order derivatives
d2Lds2 = tf.gradients(dLds, s) # throws an error
TypeError: Second-order gradient for while loops not supported.
I also tried:
d2Lds2 = tf.hessians(L, s)
ValueError: Computing hessians is currently only supported for one-dimensional tensors. Element number 0 of `xs` has 2 dimensions.
I cannot change shape of s cause it's a part of neural network (LSTM's state). The first dimension (batch_size) is already set to 1, I don't think I can get rid of it.
I cannot reshape s because it breaks flow of the gradients, e.g.:
tf.gradients(L, tf.reduce_sum(s, axis=0))
gives:
[None]
Any ideas on what can I do in this situation?