I tried to calculate the Pearson's correlation coefficients between every pairs of rows from two 2D arrays. Then, sort the rows/columns of the correlation matrix based on its diagonal elements. First, the correlation coefficient matrix (i.e., 'ccmtx') was calculated from one random matrix (i.e., 'randmtx') in the following code:
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import pearsonr
def correlation_map(x, y):
n_row_x = x.shape[0]
n_row_y = x.shape[0]
ccmtx_xy = np.empty((n_row_x, n_row_y))
for n in range(n_row_x):
for m in range(n_row_y):
ccmtx_xy[n, m] = pearsonr(x[n, :], y[m, :])[0]
return ccmtx_xy
randmtx = np.random.randn(100, 1000) # generating random matrix
#ccmtx = np.corrcoef(randmtx, randmtx) # cc matrix based on numpy.corrcoef
ccmtx = correlation_map(randmtx, randmtx) # cc matrix based on scipy pearsonr
#
ccmtx_diag = np.diagonal(ccmtx)
#
ids, vals = np.argsort(ccmtx_diag, kind = 'mergesort'), np.sort(ccmtx_diag, kind = 'mergesort')
#ids, vals = np.argsort(ccmtx_diag, kind = 'quicksort'), np.sort(ccmtx_diag, kind = 'quicksort')
plt.plot(ids)
plt.show()
plt.plot(ccmtx_diag[ids])
plt.show()
vals[0]
The issue here is when the 'pearsonr' was used, the diagonal elements of 'ccmtx' are exactly 1.0 which makes sense. However, the 'corrcoef' was used, the diagonal elements of 'ccmtrix' are not exactly one (and slightly less than 1 for some diagonals) seemingly due to a precision error of floating point numbers.
I found to be annoying that the auto-correlation matrix of a single matrix have diagnoal elements not being 1.0 since this resulted in the shuffling of rows/columes of the correlation matrix when the matrix is sorted based on the diagonal elements.
My questions are:
[1] is there any good way to accelerate the computation time when I stick to use the 'pearsonr' function? (e.g., vectorized pearsonr?)
[2] Is there any good way/practice to prevent this precision error when using the 'corrcoef' in numpy? (e.g. 'decimals' option in np.around?)
I have searched the correlation coefficient calculations between all pairs of rows or columns from two matrices. However, as the algorithms containe some sort of "cov / variance" operation, this kind of precision issue seems always existing.
Minor point: the 'mergesort' option seems to provide reliable results than the 'quicksort' as the quicksort shuffled 1d array with exactly 1 to random order.
Any thoughts/comments would be greatly appreciated!