I have a R code embedded in perl, the idea is to read a directory, put the files into an array, then loop through the array for each file, run the r rscript, that basically caluclates some stats, print them via write.table, and also make some plots, via ggplot and then save them via ggsave, everything works fine, at least the perl part, and the first part of the r script, it calculates the stats and write them correclty in the correct directory, however, when it comes to the plots, somehow ggsave doesn't work and i have no pdf file nowhere. what can the reason be? Before embedding in perl i was running the r script on r studio and ggsave was working fine. any help will be appreciated, i attach the code below:
my $mapfile = shift;
my $OTUdir = shift;
opendir my $OpOTUdir, $OTUdir;
my @OTUtab = grep {/\.txt/} readdir $OpOTUdir;
my $OTUtab;
foreach $OTUtab (@OTUtab){
my @splitname = split (/\_/, $OTUtab);
my $primer = $splitname[0];
my $dirout = "Subplot_dir_OTU".$primer.".out";
my $dir = "./".$primer."_plots/";
my $SubPlotdir = "bsub -o $dirout mkdir $dir";
my $run1 = system ('bash','-c',"$bsub && $SubPlotdir ") == 0
or die "Can't create the directories per primer set";
sleep 1 until -e "$dirout";
my $Rcmd_pure_OTU = " #here starts the r script
library (\'vegan\')
raw_data <- read.csv(\"".$OTUdir."$OTUtab\", row.names =1, sep =\"\t\", dec=\".\", header =T, skip =1)
pre_OTU_tab <- raw_data[,-which(names(raw_data) == \"taxonomy\")]
OTU_tab <- t(pre_OTU_tab)
log_OTU <- log10(OTU_tab + 1)
map <- read.csv(\"$mapfile\", sep =\"\", row.names =1, header = T)
ordered_Map <- map[match(row.names(OTU_tab), row.names(map)),]
re_ordered_Map <- ordered_Map[complete.cases(ordered_Map),]
dist_bray <- vegdist(log_OTU, method= \"bray\", binary=FALSE)
dist_bray_binary <- vegdist(log_OTU, method=\"bray\", binary=TRUE)
cap_bray <- capscale(dist_bray ~ 1)
cap_bray_bin <- capscale(dist_bray_binary ~ 1)
cap_bray_year <- capscale(dist_bray ~ as.factor(re_ordered_Map\$Origin))
cap_bray_bin_year <- capscale(dist_bray_binary ~ as.factor(re_ordered_Map\$Origin))
CA1perc_log <- (cap_bray\$CA\$eig[1]/sum(cap_bray\$CA\$eig))*100
CA1perc_log <- round(CA1perc_log, digits = 1)
CA2perc_log <- (cap_bray\$CA\$eig[2]/sum(cap_bray\$CA\$eig))*100
CA2perc_log <- round(CA2perc_log, digits = 1)
CA1perc_log_bin <- (cap_bray_bin\$CA\$eig[1]/sum(cap_bray_bin\$CA\$eig))*100
CA1perc_log_bin <- round(CA1perc_log_bin, digits = 1)
CA2perc_log_bin <- (cap_bray_bin\$CA\$eig[2]/sum(cap_bray_bin\$CA\$eig))*100
CA2perc_log_bin <- round(CA2perc_log_bin, digits = 1)
CAperc_log_year <- round((sum(cap_bray_year\$CCA\$eig)/sum(cap_bray_year\$CA\$eig, cap_bray_year\$CCA\$eig))*100, digits = 1)
CAperc_log_bin_year <- round((sum(cap_bray_bin_year\$CCA\$eig)/sum(cap_bray_bin_year\$CA\$eig, cap_bray_bin_year\$CCA\$eig))*100, digits = 1)
#print the stats
#Year
SigTest1 <- anova(cap_bray_year, by=\"term\", step=9999, perm.max=9999)
CapResults1 <- c(CAperc_log_year, SigTest1\$'Pr(>F)'[1])
Results1 <- rbind(CapResults1)
colnames(Results1) <- c(\"Percent_Correlated\", \"pval\")
write.table(Results1, file=\"".$dir."Year_pvalue_constraints_".$primer.".txt\", sep=\"\t\", quote=F, col.names=NA)
#binary year
SigTest2 <- anova(cap_bray_bin_year, by=\"term\", step=9999, perm.max=9999)
CapResults2 <- c(CAperc_log_bin_year, SigTest2\$'Pr(>F)'[1])
Results2 <- rbind(CapResults2)
colnames(Results2) <- c(\"Percent_Correlated\", \"pval\")
write.table(Results2, file=\"".$dir."Binary_year_p_value_constraints_".$primer.".txt\", sep=\"\t\", quote=F, col.names=NA)
data_for_plot <- cbind(cap_bray\$CA\$u,re_ordered_Map)
data_for_plot_bin <- cbind(cap_bray_bin\$CA\$u,re_ordered_Map)
data_for_plot_year <- cbind(cap_bray_year\$CA\$u,re_ordered_Map)
data_for_plot_bin_year <- cbind(cap_bray_bin_year\$CA\$u,re_ordered_Map)
cbbPalette <- c(\"#000000\", \"#E69F00\", \"#56B4E9\", \"#009E73\", \"#F0E442\", \"#0072B2\", \"#D55E00\", \"#CC79A7\")
ColorCount <- length(unique(re_ordered_Map\$Origin))
GetPalette <- colorRampPalette(cbbPalette, bias =3, interpolate = \"spline\", alpha = TRUE)
plot_unco <- ggplot(data_for_plot) +
geom_point( size=4, aes(x=MDS1, y=MDS2, shape= inf_uni, color = Origin), position = position_jitter(w = 0.1, h = 0.1))+
geom_vline(xintercept = 0, size = 0.3) +
geom_hline(yintercept = 0, size = 0.3) +
scale_color_manual(values = GetPalette(ColorCount)) +
theme (
panel.background = element_blank(),
legend.key = element_rect (fill = \"white\"),
legend.text = element_text (size = 15),
legend.title = element_text (size = 17, face = \"bold\"),
axis.text = element_text(size =17),
axis.line = element_line(color= \"black\", size =0.6),
axis.title = element_text(size =19, face = \"bold\")
)
ggsave(\"".$dir."My_".$primer."_Uncostrained.pdf\", plot = plot_unco, width=12, height=12, units = \"in\")
plot_bin_unco <- ggplot(data_for_plot_bin) +
geom_point( size=4, aes(x=MDS1, y=MDS2, shape= inf_uni, color = Origin), position = position_jitter(w = 0.1, h = 0.1))+
geom_vline(xintercept = 0, size = 0.3) +
geom_hline(yintercept = 0, size = 0.3) +
scale_color_manual(values = GetPalette(ColorCount)) +
theme (
panel.background = element_blank(),
legend.key = element_rect (fill = \"white\"),
legend.text = element_text (size = 15),
legend.title = element_text (size = 17, face = \"bold\"),
axis.text = element_text(size =17),
axis.line = element_line(color= \"black\", size =0.6),
axis.title = element_text(size =19, face = \"bold\")
)
ggsave(\"".$dir."My_".$primer."_Uncostrained_bin.pdf\", plot =plot_bin_unco, width=12, height=12, units = \"in\")