I'm very new to Spark and Scala(Like two hours new), I'm trying to play with a CSV data file but I cannot do it as I'm not sure how to deal with "Header row", I have searched internet for the way to load it or to skip it but I don't really know how to do that. I'm pasting my code That I'm using, please help me.
object TaxiCaseOne{
case class NycTaxiData(Vendor_Id:String, PickUpdate:String, Droptime:String, PassengerCount:Int, Distance:Double, PickupLong:String, PickupLat:String, RateCode:Int, Flag:String, DropLong:String, DropLat:String, PaymentMode:String, Fare:Double, SurCharge:Double, Tax:Double, TripAmount:Double, Tolls:Double, TotalAmount:Double)
def mapper(line:String): NycTaxiData = {
val fields = line.split(',')
val data:NycTaxiData = NycTaxiData(fields(0), fields(1), fields(2), fields(3).toInt, fields(4).toDouble, fields(5), fields(6), fields(7).toInt, fields(8), fields(9),fields(10),fields(11),fields(12).toDouble,fields(13).toDouble,fields(14).toDouble,fields(15).toDouble,fields(16).toDouble,fields(17).toDouble)
return data
}def main(args: Array[String]) {
// Set the log level to only print errors
Logger.getLogger("org").setLevel(Level.ERROR)
// Use new SparkSession interface in Spark 2.0
val spark = SparkSession
.builder
.appName("SparkSQL")
.master("local[*]")
.config("spark.sql.warehouse.dir", "file:///C:/temp") // Necessary to work around a Windows bug in Spark 2.0.0; omit if you're not on Windows.
.getOrCreate()
val lines = spark.sparkContext.textFile("../nyc.csv")
val data = lines.map(mapper)
// Infer the schema, and register the DataSet as a table.
import spark.implicits._
val schemaData = data.toDS
schemaData.printSchema()
schemaData.createOrReplaceTempView("data")
// SQL can be run over DataFrames that have been registered as a table
val vendor = spark.sql("SELECT * FROM data WHERE Vendor_Id == 'CMT'")
val results = teenagers.collect()
results.foreach(println)
spark.stop()
}
}